
ARM Assembly Handy Reference  

Labels are non-reserved symbols followed by a
colon. If on a separate line they apply to the next
line with an instruction

Instruction mnemonics begin after column 1,
usually UPPER CASE

Registers: PC, LR, SP, R0 - R12.
Parameters are passed in R0 - R3 as needed.

Assembly (.S) file begins with:

.syntax unified

.section .text

.global name_of_entry_label

File ends with: .end

Comment to end of line: @

To save incoming registers and create working
space, push a copy on the stack. Include LR if
you will call a function within your function.

 PUSH {R0, R1, R2, R3, R4, R5, LR}

Before returning, pop the registers you have
saved. List them in the same order:

 POP {R0, R1, R2, R3, R4, R5, LR}

To return:
 BX LR

Each lower level function should follow the PUSH,
POP, BX LR protocol to free up working registers
and restore them before returning.

Instruction mnemonic extensions:

Append S to the mnemonic to set flags.
Append condition code to execute conditionally.

 SUBS R1, R1, #1 @Decrement R1, set flags
 BGT looptop @Branch to loop top if >0

Constants (imm):
 If a small value, just precede with #
 Longer (e.g. address) values use =
 0x precedes hexadecimal values

 SUB R5, R1, #42
 LDR R1, =0x2009C020

Commonly Used Instructions:

LDR dest, [base] @load register
LDR dest, [base, index]
LDR dest, [base, index, LSL #imm]
LDR = imm
STR src, [base] @store register
STR src, [base, index]
STR src, [base, index, LSL #imm]
ADD dest, src1, src2 @dest = src1+src2
ADD dest, src1, #imm
SUB dest, src1, src2 @dest = src1 - src2
SUB dest, src1, #imm
RSB dest, src1, src2 @dest = src2 - src1
RSB dest, src1, #imm
MUL dest, src1, src2 @low order 32 bits
SDIV dest, src1, src2 @dest = src1/src2
CMP src1, src2 @set flags for src1-src2
CMP src1, #imm @set flags for src1-#imm
LSL dest, src, #imm @logical shift left
LSL reg, #imm
LSR dest, src, #imm @logical shift right
LSR reg, #imm
ASR dest, src, #imm @arithmetic shift right
ASR reg, #imm
ROR reg, #imm @rotate right
AND reg, #imm @bitwise AND
AND dest, src, #imm
ORR reg, #imm @bitwise OR
ORR dest, src, #imm
EOR reg, #imm @bitwise exclusive OR
EOR dest, src, #imm
MOV dest, src @move reg to reg
MVN dest, src @bitwise NOT
B label @unconditional branch
BL label @subroutine call
BX reg @branch indirect

conditions: EQ, NE, GT, LT, GE, LE, PL, MI

IF block has a condition followed by up to four
instructions. The block opens with I followed by a
pattern of Ts and Es indicating the IF/ELSE cases
in relation to the condition. Each instruction must
have the corresponding condition. Condition flags
must be set previously. Example:

CMP R1, R2 @set flags
ITTEE GT @IF block begin
ADDGT R3, R4, R5 @then
SUBGT R6, R7, R8 @then
ADDLE R6, R7, R8 @else
SUBLE R3, R4, R5 @else

