ARM Assembly Handy Reference

Labels are non-reserved symbols followed by a
colon. If on a separate line they apply to the next
line with an instruction

Instruction mnemonics begin after column 1,
usually UPPER CASE

Registers: PC, LR, SP, RO - R12.
Parameters are passed in RO - R3 as needed.

Assembly (.S) file begins with:
.syntax unified
.section .text
.global name_of_entry_label
File ends with: .end
Comment to end of line: @
To save incoming registers and create working
space, push a copy on the stack. Include LR if
you will call a function within your function.
PUSH {RO, R1, R2, R3, R4, R5, LR}

Before returning, pop the registers you have
saved. List them in the same order:

POP {RO0, R1, R2, R3, R4, R5, LR}
To return:
BX LR

Each lower level function should follow the PUSH,
POP, BX LR protocol to free up working registers
and restore them before returning.

Instruction mnemonic extensions:

Append S to the mnemonic to set flags.
Append condition code to execute conditionally.

SUBS R1, R1, #1 @Decrement R1, set flags
BGT looptop ~ @Branch to loop top if >0

Constants (imm):
If a small value, just precede with #
Longer (e.g. address) values use =
Ox precedes hexadecimal values

SUB
LDR

R5, R1, #42
R1, =0x2009C020

Commonly Used Instructions:

LDR
LDR
LDR
LDR
STR
STR
STR
ADD
ADD
SuUB
SuUB
RSB
RSB
MUL
SDIV
CMP
CMP
LSL
LSL
LSR
LSR
ASR
ASR
ROR
AND
AND
ORR
ORR
EOR
EOR
MOV
MVN
B

BL
BX

dest, [base]

@Iload register

dest, [base, index]
dest, [base, index, LSL #imm]

=imm
src, [base]

@store register

src, [base, index]
src, [base, index, LSL #imm)]

dest, srci, src2

@dest = src1+src2

dest, src1, #imm

dest, srci, src2

@dest = src1 - src2

dest, src1, #imm

dest, srci, src2

@dest = src2 - src1

dest, src1, #imm

dest, srci, src2
dest, srci, src2
srci, src2

srcl1, #imm
dest, src, #imm
reg, #imm
dest, src, #imm
reg, #imm
dest, src, #imm
reg, #imm

reg, #imm

reg, #imm
dest, src, #imm
reg, #imm
dest, src, #imm
reg, #imm
dest, src, #imm
dest, src

dest, src

label

label

reg

@Iow order 32 bits
@dest = src1/src2

@set flags for src1-src2
@set flags for src1-#imm
@Ilogical shift left

@logical shift right
@arithmetic shift right

@rotate right
@bitwise AND

@bitwise OR
@bitwise exclusive OR

@move reg to reg
@bitwise NOT
@unconditional branch
@subroutine call
@branch indirect

conditions: EQ, NE, GT, LT, GE, LE, PL, Ml

IF block has a condition followed by up to four
instructions. The block opens with | followed by a
pattern of Ts and Es indicating the IF/ELSE cases
in relation to the condition. Each instruction must
have the corresponding condition. Condition flags
must be set previously. Example:

CMP R1, R2 @set flags
ITTEE GT @IF block begin
ADDGT R3, R4, R5 @then

SUBGT R6, R7, R8 @then

ADDLE R6, R7, R8 @else

SUBLE R3, R4, R5 @else



