J ARMYV7-M Architecture

Reference Manual

Errata markup

ARM

Copyright © 2006-2010 ARM Limited. All rights reserved.
ARM DDI 0403Derrata 2010_Q3 (ID100710)

ARM editor
ARM tests the PDF errata markups only in Adobe Acrobat and Acrobat Reader, and cannot guarantee that the markups will appear correctly in any other PDF reader.

In body text:
 • red strike-thru indicates a deletion
 • blue strike-thru indicates a replacement
 • a blue caret indicates an insertion.
For replacements and insertions, the new text appears if you hover the mouse pointer over the markup.

Double-clicking on any markup opens a message box that describes the markup.

To ensure you locate all markup you can choose to Show Comments List. By default this lists comments by page number, and appears as a separate pane below the document view. However, you can display the comments list in a separate window. See the Acrobat Help for more information.

ARMv7-M Architecture Reference Manual

Copyright © 2006-2010 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change history

Date Issue Confidentiality Change

June 2006 A Non-confidential Initial release

July 2007 B Non-confidential Second release, errata and changes documented separately

September 2008 C Non-confidential, Options for additional watchpoint based trace in the DWT, plus errata
Restricted Access updates and clarifications.

12 February 2010 D Non-confidential Fourth release, adds DSP and Floating-point extensions, and extensive

clarifications and reorganization.
November 2010 Derrata 2010 Q3 Non-confidential Marked-up errata PDF, see page iii for more information.

Proprietary Notice

This ARM Architecture Reference Manual is protected by copyright and the practice or implementation of the
information herein may be protected by one or more patents or pending applications. No part of this ARM Architecture
Reference Manual may be reproduced in any form by any means without the express prior written permission of ARM.
No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this ARM
Architecture Reference Manual.

Your access to the information in this ARM Architecture Reference Manual is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether implementations of the ARM
architecture infringe any third party patents.

This ARM Architecture Reference Manual is provided “as is”. ARM makes no representations or warranties, either
express or implied, included but not limited to, warranties of merchantability, fitness for a particular purpose, or
non-infringement, that the content of this ARM Architecture Reference Manual is suitable for any particular purpose or
that any practice or implementation of the contents of the ARM Architecture Reference Manual will not infringe any third
party patents, copyrights, trade secrets, or other rights.

This ARM Architecture Reference Manual may include technical inaccuracies or typographical errors.

To the extent not prohibited by law, in no event will ARM be liable for any damages, including without limitation any
direct loss, lost revenue, lost profits or data, special, indirect, consequential, incidental or punitive damages, however
caused and regardless of the theory of liability, arising out of or related to any furnishing, practicing, modifying or any
use of this ARM Architecture Reference Manual, even if ARM has been advised of the possibility of such damages.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited, except as otherwise stated
below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective
owners.

Copyright © 2006-2010 ARM Limited

110 Fulbourn Road Cambridge, England CB1 9NJ

Copyright © 2006-2010 ARM Limited. All rights reserved. ARM DDI 0403Derrata 2010_Q3
Non-Confidential ID100710

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

This document is Non-Confidential but any disclosure by you is subject to you providing notice to and the
acceptance by the recipient of, the conditions set out above.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as
appropriate”.
Note

The term ARM is also used to refer to versions of the ARM architecture, for example ARMv6 refers to version 6 of the
ARM architecture. The context makes it clear when the term is used in this way.

Note

For this errata PDF, pages i to iii have been replaced, by an edit to the PDF, to include this note, and to show this errata
PDF in the Change History table. The remainder of the PDF is the original release PDF of issue D of the document, with
errata markups added.

ARM DDI 0403Derrata 2010_Q3 Copyright © 2006-2010 ARM Limited. All rights reserved. iii

ID100710

Non-Confidential

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

ARM DDI 0403D
1D021310

Contents

ARMv7-M Architecture Reference Manual

Preface
About this manual ... XXii
Using this manual ... XXiii
CONVENLIONS ittt XXVi
Further readingooooieiiiii e XXVii
FEEADACKooiiiiiiei XXViii
Part A Application Level Architecture
Chapter 1 Introduction
A1A1 About the ARMv7 architecture, and architecture profiles A1-32
A1.2 The ARMv7-M architecture profileccccccviiiiiiinieeeee A1-33
A1.3 Architecture extensions ... A1-35
Chapter 2 Application Level Programmers’ Model
A2.1 About the application level programmers’ modelcccccconeee. A2-38
A2.2 ARM processor data types and arithmetic ..., A2-39
A2.3 Registers and execution statecoccooiiiiii A2-46
A2.4 Exceptions, faults and interruptsccocceeeviieiiiiiciieeee e, A2-50
A2.5 (O70]o] folerXX:To] 10T o] oTo] o SRRSO A2-52
A2.6 The optional Floating-point extensioncccccveeiiiiinniiee e A2-53
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. v

1D021310

Non-Confidential, Unrestricted Access

Contents

Chapter 3 ARM Architecture Memory Model
A3.1 AdAreSS SPACE ...t A3-82
A3.2 AlIgNMENt SUPPOIT ..o A3-83
A3.3 ENdian SUPPOIT ... A3-85
A3.4 Synchronization and semaphorescccocvviiiiie i A3-89
A3.5 Memory types and attributes and the memory order model A3-99
A3.6 ACCESS MGNES ..o A3-109
A3.7 MemOory aCCESS OFENoeiiiiiiiiiee et A3-111
A3.8 Caches and memory hierarchyccccociiiiiiiini e A3-120
Chapter 4 The ARMv7-M Instruction Set
A4 About the instruction set ... A4-124
A4.2 Unified Assembler Languagecccocceeerieriniieesiiee e A4-126
A4.3 Branch inStruCtionSccooiuiiiiiiie e A4-129
Ad.4 Data-processing inStructionsc.cccoccvevieiiiciiiee e A4-130
A4.5 Status register access instructionsccccceiiiiiiiic e A4-140
A4.6 Load and store inStructionsccceeeveiiieeniie e A4-141
A4.7 Load Multiple and Store Multiple instructionscccccvvveeeeen.n. A4-144
A4.8 Miscellaneous inStructionsccoecviiiie i A4-145
A4.9 Exception-generating instructionsccccooiiiiiiiiiciieee, A4-146
A4.10 Coprocessor iNStIUCHONSccccveiieiiiiiiiee e A4-147
A4.11 Floating-point load and store instructionsccccccooieiiiernnee. A4-148
A4.12 Floating-point register transfer instructionsccccocoeevennnne A4-149
A4.13 Floating-point data-processing instructionsccccccoiiiieeen. A4-150
Chapter 5 The Thumb Instruction Set Encoding
A5.1 Thumb instruction set encodingcccoooiiiiiiiiii s A5-152
A5.2 16-bit Thumb instruction encodingcccceeiiiiiiiiiiiie A5-156
A5.3 32-bit Thumb instruction encodingcccceviiiiiiiiiiii s A5-164
Chapter 6 The Floating-Point Instruction Set Encoding
AB.1 OVEIVIBW ...ttt et AB-190
A6.2 Floating-point instruction syntaxcccccccoveviiieiiiiiiiee e A6-191
A6.3 Register enCOdiNgcooiviiiiiiiiiiic e A6-194
A6.4 Floating-point data-processing instructionsccccceeevveennnee. AB-195
A6.5 Extension register load or store instructionscccccooieee. A6-197
A6.6 32-bit transfer between ARM core and extension registers A6-198
A6.7 64-bit transfers between ARM core and extension registers A6-199
Chapter 7 Instruction Details
A7 A1 Format of instruction descriptionsccccccooviieiiiiiiic e A7-202
A7.2 Standard assembler syntax fieldsccccoeeiiiiiiieiieiieeees A7-207
A7.3 Conditional @XeCUtioNccoviiiiiiiiii e A7-208
A7.4 Shifts applied to a registerccoviiiiiiiiie A7-212
A7.5 MEMOIY QCCESSES ...eiiiiiiiiiiiee ettt A7-214
A7.6 HIiNt INStructions ... A7-215
Vi Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D

Non-Confidential, Unrestricted Access 1D021310

Contents

A7.7 Alphabetical list of ARMv7-M Thumb instructions A7-216

Part B System Level Architecture
Chapter 1 System Level Programmers’ Model
B1.1 Introduction to the system levelccooiiiiiiiie, B1-616
B1.2 About the ARMv7-M memory mapped architecture B1-617
B1.3 Overview of system level terminology and operation B1-618
B1.4 REGISIErS .. B1-623
B1.5 ARMvV7-M exception modelccoooviiiiiiiiiiiiiie e B1-631
B1.6 Floating-point SUPPOItcccuvviiiiiiie e B1-685
Chapter 2 System Memory Model
B2.1 About the system memory modelccocoeeiiiiiieiin e B2-692
B2.2 Pseudocode details of general memory system operations B2-693
Chapter 3 System Address Map
B3.1 The system address Mapcccooceeeiiieeiiii e B3-704
B3.2 System Control Space (SCS)ceeeiiiiieiiiieiee e B3-708
B3.3 The system timer, SYSTICKoovoieiiiieeiie e B3-744
B3.4 Nested Vectored Interrupt Controller, NVICcccoeeeeeinnneen. B3-750
B3.5 Protected Memory System Architecture, PMSAV7cccc........ B3-761
Chapter 4 The CPUID Scheme
B4.1 About the CPUID SChemeccocuiriiiiiieieecec e B4-778
B4.2 Processor Feature ID Registersccoccveeviiiiieee e B4-780
B4.3 Debug Feature ID registerccccvviviieiiieeiiiec e B4-781
B4.4 Auxiliary Feature ID registerccccooeeiiiiiiiiieeee e B4-782
B4.5 Memory Model Feature Registerscccoiiiiiiiiiiiiie. B4-783
B4.6 Instruction Set Attribute Registerscccoocceeiiiiiiiciiieece B4-785
B4.7 Floating-point feature identification registersc.cccccoiveenne. B4-794
Chapter 5 System Instruction Details
B5.1 About the ARMvV7-M system instructionsccccoccceeeiniiienenn. B5-798
B5.2 ARMV7-M system instruction descriptionscccccovceeriienennnen B5-800
Part C Debug Architecture
Chapter 1 ARMv7-M Debug
C11 Introduction to ARMv7-M debugcccooiiiiiiiie, C1-810
C1.2 The Debug Access POrtcooeiiiiiiee e C1-815
C1.3 Overview of the ARMv7-M debug featuresc.cccocevirieiennenn. C1-819
c14 Debug and reset ... C1-822
C1.5 Debug event behaviorccceeiiiiiiiii C1-823
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. vii

1D021310

Non-Confidential, Unrestricted Access

Contents

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

C1.6 Debug register support in the SCS ... C1-828
C1.7 The Instrumentation Trace Macrocellcccocoeiiiiiiiiieinieene C1-843
C1.8 The Data Watchpoint and Trace unitcoccceviieiiiiiiiiienenneen, C1-856
C1.9 Embedded Trace Macrocell Supportccccoeveeeriieeiiieeiiieeeee C1-896
C1.10 Trace Port Interface Unitccoooiiiiiii e C1-897
C1.11 Flash Patch and Breakpoint unitccccccevieiiiiiiiiiiiiis C1-904

ARMv7-M CoreSight Infrastructure IDs
A1 CoreSight infrastructure IDs for an ARMv7-M implementation
AppxA-914

Legacy Instruction Mnemonics

B.1 Thumb instruction mMNemonNIcsccccccveeeieiiieiee e, AppxB-918
B.2 Pre-UAL pseudo-instruction NOPcccccccooiiiieiiiiiieecees AppxB-922
B.3 Pre-UAL floating-point instruction mnemonics AppxB-923

Deprecated Features in ARMv7-M
CA1 Deprecated features of the ARMv7-M architecture AppxC-928

Debug ITM and DWT Packet Protocol

D.1 About the ITM and DWT packetscccceveciviiiiiiiiiieieeeeeeeen AppxD-932
D.2 Packet descCriptionscceiiviiiiiieeiie e AppxD-934
D.3 DWT use of Hardware source packetsc.ccccoveeiiinnenne. AppxD-944

ARMv7-R Differences

E.1 About the ARMv7-M and ARMv7-R architecture profiles AppxE-952
E.2 Endian SUPPOIto AppxE-953
E.3 Application level support ... AppxE-954
E.4 System level SUPPOTtcooviiiiiiiieeeee e AppxE-955
E.5 DebUug SUPPOIT ... AppxE-956
Appendix F Pseudocode Definition
F.1 Instruction encoding diagrams and pseudocode AppxF-958
F.2 Limitations of pseudocodeccccceeviiiiniiiiiiee e AppxF-960
F.3 Data tyPeS ..o AppxF-961
F.4 EXPrESSIONS ...oiiiiiiiiiiiieeiie ettt AppxF-965
F.5 Operators and built-in functionscccccoiiiiiiii. AppxF-967
F.6 Statements and program structureccccceeiiiiiiiennnnenn. AppxF-973
F.7 Miscellaneous helper procedures and functions AppxF-978
Appendix G Pseudocode Index
GA1 Pseudocode operators and keywordsccccceeeeiiinenenn. AppxG-984
G.2 Pseudocode functions and proceduresccccovveeeinineene AppxG-988
viii Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D

Non-Confidential, Unrestricted Access 1D021310

Contents

Appendix H Register Index
H.1 ARM core registers ... AppxH-1002
H.2 Floating-point extension registerscccoooivieiiiiiiieneens AppxH-1003
H.3 Memory mapped system registersccccooiiiieiiiiiiiennns AppxH-1004
H.4 Memory-mapped debug registersccccccevvieiiiieeininene AppxH-1007
Glossary
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ix

1D021310

Non-Confidential, Unrestricted Access

Contents

X Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

List of Tables
ARMv7-M Architecture Reference Manual

(070 F=TgTo 1= 011 (o] YR ii

Table A2-1 FPSCR bit @SSIGNMENTSoooiiiiiiiiiiiiiie e A2-56
Table A2-2 Default NaN encodingcoooiiiiiiiiiie e A2-64
Table A2-3 Floating-point exception default resultscccciiiiiiiiiniie A2-65
Table A2-4 FP comparison flag values ..o A2-73
Table A3-1 Load-store and element size associationcccccceeiiiiiiiiiieiiiiee A3-87
Table A3-2 Effect of Exclusive instructions and write operations on local monitor A3-91
Table A3-3 Effect of load/store operations on global monitor for processor(n) A3-95
Table A3-4 Memory attribute SUMMArycccooiiiiiii e A3-100
Table A4-1 Branch inStrUCLIONSeiiii e A4-129
Table A4-2 Standard data-processing instructionsccccceiiiiiiiinni e A4-131
Table A4-3 Shift INSIFUCIONS ... A4-132
Table A4-4 General multiply iNStrUCHIONSoceiiiiiieee e A4-133
Table A4-5 Signed multiply instructions, ARMv7-M base architecture A4-133
Table A4-6 Signed multiply instructions, ARMv7-M DSP extensionc.ccceceueeenn. A4-133
Table A4-7 Unsigned multiply instructions, ARMv7-M base architecture A4-134
Table A4-8 Unsigned multiply instructions, ARMv7-M DSP extensioncccccce.... A4-134
Table A4-9 Saturating instructions, ARMv7-M base architecturecccccooeeee. A4-135
Table A4-10 Halfword saturating instructions, ARMv7-M DSP extension A4-135
Table A4-11 Saturating addition and subtraction instructions, ARMv7-M DSP extension

A4-135

Table A4-12 Packing and unpacking instructions, ARMv7-M base architecture A4-136
Table A4-13 Packing and unpacking instructions, ARMv7-M DSP extension A4-136
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. Xi

1D021310

Non-Confidential, Unrestricted Access

List of Tables

Table A4-14
Table A4-15
Table A4-16
Table A4-17
Table A4-18
Table A4-19
Table A4-20
Table A4-21
Table A4-22
Table A5-1
Table A5-2
Table A5-3
Table A5-4
Table A5-5
Table A5-6
Table A5-7
Table A5-8
Table A5-9
Table A5-10
Table A5-11
Table A5-12
Table A5-13
Table A5-14
Table A5-15
Table A5-16
Table A5-17
Table A5-18
Table A5-19
Table A5-20
Table A5-21
Table A5-22
Table A5-23
Table A5-24
Table A5-25
Table A5-26
Table A5-27
Table A5-28
Table A5-29
Table A5-30
Table A6-1
Table A6-2
Table A6-3
Table A6-4
Table A6-5
Table A6-6
Table A6-7
Table A6-8

Parallel addition and subtraction instructionscccccceeeeeeeiiiiiiiiiieene. A4-138
Miscellaneous data-processing instructions, ARMv7-M base architecture A4-138
Miscellaneous data-processing instructions, ARMv7-M DSP extension A4-139

Load and store inStructionsccooccieiii i A4-141
Load Multiple and Store Multiple instructionsccccoveiiiniiii e A4-144
Miscellaneous iNStrUCIONScooiiiiiiiii e A4-145
FP extension register load and store instructionsccccccoiiiiiiiininen. A4-148
FP extension register transfer instructionscccoccceiiiiiiiii e A4-149
Floating-point data-processing inStructionscccoccceeiiiieniieeinieecnieeene A4-150
16-bit Thumb instruction encodingccccceiiiiiiiii e A5-156
16-bit shift (immediate), add, subtract, move and compare encoding A5-157
16-bit data processing inStruCtionsoooiiiiiii i A5-158
Special data instructions and branch and exchangecccccoeciiiiennie A5-159
16-bit Load/store iNStruCtionscccoocieeeiiiriiie e A5-160
Miscellaneous 16-bit inStrUCtIONScccciiiiiiiiiiiii e, A5-161
[f-Then and hint iNStrUCtiONSc..coviiiiii e A5-162
Branch and supervisor call inStructionscccoceeiiiieeiiiieniiec e A5-163
32-bit Thumb encodingcooiiiiiiiiee e A5-164
32-bit modified immediate data processing instructionscccccco.... A5-165
Encoding of modified immediates in Thumb data-processing instructions A5-166
32-bit unmodified immediate data processing instructions A5-168
Branches and miscellaneous control instructionsccccoveviiinninnen. A5-169
Change Processor State, and hint instructionsccccocoviiiiiiiiiinnis A5-170
Miscellaneous control INStrUCIONSc.ceviiiiiriiee e A5-170
Load Multiple and Store Multiple instructionscccooeiciiiiiiiieeeeeeee. A5-171
Load/store dual or exclusive, table branchccccoovviieeieiiiie. A5-172
o= To IR o] o RPN A5-173
Load halfword, memory hintSccccceeiiiiiiiie i A5-174
Load byte, memory hintScooiiiiiii e A5-176
Store single data itemc..ooiiiii A5-178
Data-processing (shifted register) ... A5-179
Move register and immediate shiftsccccccoiiiiiiiiiiiii e A5-180
Data processing (FE€QIStEr)ieereiieiie et A5-181
Signed parallel addition and subtraction instructionscccccceeeiiiniie A5-182
Unsigned parallel addition and subtraction instructionsccccccoeeene A5-183
Miscellaneous OPErationsc.ccocueiiiiieiiiii e A5-185
Multiply, multiply accumulate, and absolute difference operations A5-186
Long multiply, long multiply accumulate, and divide operations A5-187
Coprocessor iNSIHUCIONSc.vveiieiiiiieee e A5-188
Data type specification flexibilitycccccooeiiiiiiiiii A6-192
Floating-point register specifier formatscccocoiiiiniiiiiiiceee A6-192
Example register liStS ... AB-193
Encoding of register NUMDErscccoviiiiiiii e A6-194
Three-register floating-point data-processing instructionsc.......... A6-195
Floating-point modified immediate constantscccccocoiiiiiiiieiiiiens A6-196
FP extension register load and store instructionsccccccevviiiieiinnen. A6-197
Instructions for 32-bit data transfers to or from FP extension registers A6-198

Xii

ARM DDI 0403D
1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

List of Tables

1D021310

Table A6-9 64-bit data transfer iNStructionsccocveviiniie e A6-199
Table A7-1 CONAItiON COUBSoiiiiriiiiiiii ettt A7-208
Table A7-2 Effect of IT execution state bitsccoooeeiiiiii A7-211
Table A7-3 Determination of mask fieldcccccciiiiiiiiii i A7-278
Table A7-4 MOV (shift, register shift) equivalences)ccccoiiiiiiniee, A7-351
Table B1-1 Mode, privilege and stack relationshipccccooiiiiiiii B1-618
Table B1-2 ICI/IT bit allocation in the EPSRccooiiiiiiiiiiiecceeec e B1-626
Table B1-3 Mnemonics for combinations of xPSR registersccccoovieeiiiininenneen. B1-626
Table B1-4 Exception numbers
Table B1-5 Vector table format
Table B1-6 Relation between number of priority bits and maximum priority value B1-636
Table B1-7 Priority GQroUpingeeoeoooeieee e B1-636
Table B1-8 EXC_RETURN definition of exception return behavior, no FP extension .. B1-653
Table B1-9 EXC_RETURN definition of exception return behavior, with FP extension B1-653
Table B1-10 FP common register bloCkcoccviiiiiiiiiie e B1-686
Table B3-1 ARMV7-M addreSs Mapcceeeieiiiiiieee et e e e e e saaee e B3-705
Table B3-2 Subdivision of the System region of the ARMv7-M address map B3-706
Table B3-3 SCS address SPACE MEGIONSeeeiieiiiiiiieaeeaiiieeeeeaaieereeeeaaeeeeaeeannneeeeaaaaas B3-708
Table B3-4 Summary of SCB registers ... B3-710
Table B3-5 Summary of additional SCB registers for the FP extension B3-711
Table B3-6 Summary of system control and ID register not in the SCB B3-712
Table B3-7 CPUID Base Register bit assignmentscccccceeviiiiieiiiiiiee e B3-713
Table B3-8 ICSR bit @SSIGNMENTSooiiiiiiiii e B3-714
Table B3-9 VTOR bit @SSIgNMENTScoooviiiiiiiiii e B3-716
Table B3-10 AIRCR bit @ssignmentscoooiiiiiii e B3-717
Table B3-11 SCR bit @SSIgNMENTSooiiiiiiiie e B3-719
Table B3-12 CCR bit @SSINMENLScoiiiieeiiie e e e seeee e B3-720
Table B3-13 SHPR1 Register bit assignmentsccccooviiiiiiiiici e B3-723
Table B3-14 SHPR2 Register bit assignments ... B3-724
Table B3-15 SHPRS3 Register bit assignments ... B3-725
Table B3-16 SHCSR bit @sSigNmMENtsoooiiiiiiiie e B3-726
Table B3-17 CFSR bit @sSignmENtSooeiiiiiiieiie e B3-728
Table B3-18 MMPFSR bit @SSIGNMENEScoiiiiieiiiieee e B3-729
Table B3-19 BFSR bit @SSignmeNtscooouiiiiiiiiiiee e B3-730
Table B3-20 UFSR bit @SSIGNMENESooiiiiiiiiiiee e B3-732
Table B3-21 HFSR bit @SSIgNMEeNtscooiiiiiiii e B3-733
Table B3-22 MMFAR bit @SSIgNMENtSooooiiiiiii e B3-734
Table B3-23 BFAR bit @assignments ... e B3-735
Table B3-24 CPACR bit @sSignmeNtscccooviiiiiiieeeee e B3-736
Table B3-25 FPCCR bit @sSignmEeNtscoooiiiiiiiieiiiiiee e B3-738
Table B3-26 FPCAR bit @SSIGNMENTScciiiiiiiiiiiiie e B3-740
Table B3-27 FPDSCR bit @SSignmentsccccooiiiiiiiieiiic e B3-741
Table B3-28 ICTR bit @SSIGNMENESeeiiiiiieei e e B3-742
Table B3-29 STIR bit @SSIGNMENLESoeiiiiiiiii e B3-743
Table B3-30 SysTick register SUMMAYcoooiiiiiiiiee e B3-745
Table B3-31 SYST_CSR bit @ssSignmentsccccoouiiiiiiiiiiiee e B3-746
Table B3-32 SYST_RVR bit @ssignmentscccooiiiiiiiiiiiiieee e B3-748
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. Xiii

Non-Confidential, Unrestricted Access

List of Tables

Table B3-33
Table B3-34
Table B3-35
Table B3-36
Table B3-37
Table B3-38
Table B3-39
Table B3-40
Table B3-41
Table B3-42
Table B3-43
Table B3-44
Table B3-45
Table B3-46
Table B3-47
Table B3-48
Table B3-49
Table B3-50
Table B3-51
Table B3-52
Table B3-53
Table B3-54
Table B4-1

Table B4-2

Table B5-1

Table B5-2

Table C1-1

Table C1-2

Table C1-3

Table C1-4

Table C1-5

Table C1-6

Table C1-7

Table C1-8

Table C1-9

Table C1-10
Table C1-11
Table C1-12
Table C1-13
Table C1-14
Table C1-15
Table C1-16
Table C1-17
Table C1-18
Table C1-19
Table C1-20
Table C1-21

SYST_CVR bit assignmentsccccecciriiiiieiieeeee e B3-748
SYST_CALIB Register bit assignmentscccccoeoiiiiiiniieiiie e B3-749
NVIC register SUMMANYcccuuiiiiiiiiiie et e B3-753
Implemented NVIC registers, except NVIC_IPRScccocoviiiiiiiieniiieens B3-754
Implemented NVIC_IPRSooiiiiiiie e B3-754
NVIC_ISERnN Register bit assignmentsccocccviiieeiiiinniee e B3-756
NVIC_ICERnN Register bit assignmentsccccooooiiiiiiiii e, B3-757
NVIC_ISPRn Register bit assignmentsccocccviiireiiiinniee e B3-758
NVIC_ICPRn Register bit assignmentsccccceiiiiiiiiiini e B3-759
NVIC_IABRXx Register bit assignmentscccoocoiiiiiiiiiiiniceee e, B3-760
NVIC_IPRx Register bit assignmentscccccooiiiiiiiini e B3-760
MPU register SUMMAIYoooiiiiiiie e B3-765
MPU_TYPE Register bit assignmentsccccoiiiiiiiiiiieee, B3-766
MPU_CTRL Register bit assignmentsccccooociiiiiiiiiiiiiiiee e B3-767
Effect of MPU_CTRL settings on unprivileged instructions B3-769
MPU_RNR bit @sSignmeNntsccccvieeiiiiiiiieeieiiieee e B3-770
MPU_RBAR bit assignmentsccccoriiiiiiiiiiiec e B3-771
MPU_RASR bit assignments ... B3-772
TEX, C, B, and S ENCOAINGcoeeiiiiiiiiiaaiieee et B3-773
Cache policy €NCOAINGuveriiiieiiiee ettt B3-774
Access permissions field encodingcooccviiiiiiiien e B3-775
Execute Never €NCOAINGcccuviieiiiiiiiee e B3-775
Processor Feature ID register support in the SCS ... B4-778
Supported Synchronization Primitivesccccciiiiiiiiiiiiec e B4-793
Special register field encodingcceiiiiiiiiiii e B5-798
<bits> encoding on MSR APSR WIteScoeviiiiiiiiiiiieecieeeee e B5-799
PPB debug related regions ... C1-811
Determining the debug support in an ARMv7-M implementation C1-813
ROM table entry formatcooiiiiiiiiii e C1-816
ARMV7-M DAP accessible ROM tablecoccceviiiiiiiiiineeeeeee e C1-817
ARMvV7 debug authentication signalscccccoiiiiiiiiiiii e, C1-820
DEDUQG BVENLS ..o C1-824
Debug stepping control using the DHCSRccccoiiiieiiiiieiee e C1-825
Debug register SUMMANYcccoeiiiiiiiiiie e e C1-828
DFSR bit @SSIgNmMENtscoceiiiiiiiiiiii e C1-829
DHCSR bit @ssignmentscccoiiiiiiiiiei e C1-830
DCRSR bit assignments ... C1-834
DCRDR bit @SSIGNMENTESeiiiiiiiieiiee i C1-837
DEMCR bit @SSIGNMENLESociviieiiiieeiie e C1-839
Register SUMMAIYcoouiiiie e C1-849
ITM_STIMX register bit assignments ..o C1-850
ITM_TERX bit @SSIGNMENtScccuiiiiiiiiiiiiecee e C1-851
Mapping between ITM_TERS, stimulus ports, and ITM_STIMs C1-851
ITM_TPR bit @sSignmentsccoooiiiiiiiii e C1-852
ITM_TCR bit @SSignmeNtsccoiiiiiiiiieeee e C1-853
DWT_FUNCTION register comparison type definitioncccccceevenns C1-858
DWT address comparison fuNClioNSc.ccccveriiiiiiieeiniii e C1-860

Xiv

ARM DDI 0403D
1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

List of Tables

1D021310

Table C1-22 DWT cycle count comparison functionsccceccvevieeenieeeniie e C1-863
Table C1-23 DWT data value comparison functionsccccccveieeiiiiiiiee e C1-865
Table C1-24 CYCCNT tap bit for POSTCNT tiMErccccveiiiiiiiieiie e C1-872
Table C1-25 Effect of a CYCCNT tap bit transition when POSTCNT is zero C1-873
Table C1-26 CYCCNT tap bit for synchronization packet timerccccccoviiiiiieinnen. C1-874
Table C1-27 DWT_CTRL profile counter overflow event enable bits C1-876
Table C1-28 DWT register SUMMAIYcueiiiiiiiiieee e e e e C1-878
Table C1-29 DWT_CTRL register bit assignmentsccoccceeiiiiiiieeiieeeee e C1-880
Table C1-30 DWT_CYCCNT register bit assignmentscccoccvieeiiiiiiiiieecieeee e C1-884
Table C1-31 DWT_CPICNT register bit assignmentsccccooiieeiiiiiiiee e C1-885
Table C1-32 DWT_EXCCNT register bit assignmentscccoccciiiieiiniiiniecee C1-886
Table C1-33 DWT_SLEEPCNT register bit assignmentsccccooiiiiiiiiiiiiiiieenee C1-887
Table C1-34 DWT_LSUCNT register bit assignmentscccoooiiiiiiiiieee C1-888
Table C1-35 DWT_FOLDCNT register bit assignmentscccovoieiiiiiiniiiie e C1-889
Table C1-36 DWT_PCSR bit @sSignmentsccocoiieiiiiiiiee e C1-890
Table C1-37 DWT_COMPN register bit assignmentsccccoceciiieeiiiiiiiee e C1-891
Table C1-38 DWT_MASKN register bit assignmentscccoocviiiiiiiiiieniicee e C1-892
Table C1-39 DWT_FUNCTIONRN register bit assignmentscccccooiiiiiiiiiiie C1-894
Table C1-40 Required TPIU registers ... C1-898
Table C1-41 TPIU_SSPSR bit assignmentsccooceveeiiiiiiie e C1-899
Table C1-42 TPIU_CSPSR bit @assignmentsc.ccoiiiiiiiiiiiee e C1-900
Table C1-43 TPIU_ACPR bit @SSIgNMENtScccvviiiiiiiiiie e C1-901
Table C1-44 TPIU_SPPR bit @SSignmentsccccociriiiiiiiiiieeniee e C1-902
Table C1-45 TPIU_TYPE register bit assignmentscccceeiiiiiiiiiiieeece C1-903
Table C1-46 Flash Patch and Breakpoint register summarycccccoiiiiiieiiiiiiiennnnine C1-906
Table C1-47 FP_CTRL register bit assignmentsccccooieeiiiiriiir e C1-907
Table C1-48 FP_REMARP register bit assignmentsccccooooiiiiiieniie e C1-908
Table C1-49 FP_COMPN register bit assignmentsc.cccoeciiieiiiciiiie e C1-910
Table A-1 Component and Peripheral ID register formatscccccoviiiniiinnenn. AppxA-914
Table A-2 ARMv7-M and CoreSight management registers AppxA-915
Table B-1 Pre-UAL assembly SYNtaxcc.cooiiiiiiiiiiiiiie e AppxB-918
Table B-2 UAL equivalents of pre-UAL floating-point instruction mnemonics AppxB-923
Table D-1 ITM and DWT protocol packet categoriescccccvviiieieeiiiiiieeennes AppxD-932
Table D-2 ITM and DWT protocol packet formatsccccceeveeiiiiiiiieeieciieee e AppxD-935
Table D-3 ITM and DWT Instrumentation and Hardware source packet formats . AppxD-941
Table D-4 SS value and payload SiZeccceeviiiiiiii e AppxD-942
Table D-5 Event counter packet payload bit assignmentsccocciiiiiie. AppxD-945
Table D-6 Exception trace packet payload bit assignmentsccccceiiiiiiee. AppxD-946
Table D-7 Discriminator IDs for Data trace packetscccccocoiieiiiciiiee e AppxD-949
Table F-1 Conventions for bitstrings with and without do not care bits AppxF-967
Table G-1 Pseudocode operators and Keywordscccccceevciiinieniiiieeniieee AppxG-984
Table G-2 Pseudocode functions and procedurescccccoceeeiiieeniiecnieeenneenn AppxG-988
Table H-1 ARM core register iNdeX ..o AppxH-1002
Table H-2 Memory-mapped system register indexccccoecieeieiiiiiiiiiiiniiiee. AppxH-1004
Table H-3 Memory-mapped debug register indexccccooeiieieiiiiiiee e AppxH-1007
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. XV

Non-Confidential, Unrestricted Access

List of Tables

Xvi Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

List of Figures
ARMv7-M Architecture Reference Manual

Figure A2-1 Alternative views of the FP extension register bankcccoccviiiinie. A2-54
Figure A2-2 FPSCR bit @SSignmentsc..ooiiiiiiiiiiie e A2-56
Figure A3-1 Little-endian byte format ..o A3-85
Figure A3-2 Big-endian byte format ..o A3-85
Figure A3-3 Little-endian memory SyStem ..o A3-86
Figure A3-4 Big-endian memory SYStEMooiiiiiiiii i A3-86
Figure A3-5 Instruction byte order in MEMOrY ..o A3-87
Figure A3-6 Local monitor state machine diagramccccoeeiiiiiiiiiiie e A3-91
Figure A3-7 Global monitor state machine diagram for a processor in a multiprocessor system
A3-94
Figure A3-8 Memory ordering restriCtions ... A3-115
Figure B1-1 The PSR register [ayout ... B1-624
Figure B1-2 The special-purpose mask registerscccuiiiiiiiiiiie e B1-627
Figure B1-3 Alignment options when stacking the basic framec.ccoccciiiieiiiinns B1-648
Figure B1-4 Alignment options when stacking the Extended framecccccceevieens B1-651
Figure B3-1 CPUID Base Register bit assignmentsccccociiiiiiiiiiiee e B3-713
Figure B3-2 ICSR bit @SSIGNMENESoooiieiiiie e B3-714
Figure B3-3 VTOR bit @SSigNmMENtsooiiiiiiiie e B3-716
Figure B3-4 AIRCR bit @SSigNMENTSooiiiiiiiiie e B3-717
Figure B3-5 SCR bit @SSIGNMENES ... B3-719
Figure B3-6 CCR bit @SSigNmMENTSvviiiieiiee e B3-720
Figure B3-7 SHPR1 Register bit assignments ... B3-723
Figure B3-8 SHPR2 Register bit assignments ... B3-724
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. Xvii

1D021310

Non-Confidential, Unrestricted Access

List of Figures

Figure B3-9

Figure B3-10
Figure B3-11
Figure B3-12
Figure B3-13
Figure B3-14
Figure B3-15
Figure B3-16
Figure B3-17
Figure B3-18
Figure B3-19
Figure B3-20
Figure B3-21
Figure B3-22
Figure B3-23
Figure B3-24
Figure B3-25
Figure B3-26
Figure B3-27
Figure B3-28
Figure B3-29
Figure B3-30
Figure B3-31
Figure B3-32
Figure B3-33
Figure B3-34
Figure B3-35
Figure B3-36
Figure B3-37
Figure B3-38
Figure C1-1

Figure C1-2

Figure C1-3

Figure C1-4

Figure C1-5

Figure C1-6

Figure C1-7

Figure C1-8

Figure C1-9

Figure C1-10
Figure C1-11
Figure C1-12
Figure C1-13
Figure C1-14
Figure C1-15
Figure C1-16
Figure C1-17

SHPR3 Register bit assignmentscccccveiiiiiiiii e B3-724
SHCSR bit assSignmeENtsccooiiiiiie e B3-726
CFSR bit @SSigNMENtScoooiiiiiiiieiiiiiie e B3-728
MMFSR bit @SSIGNMENEScooiiiiiieieiee e B3-729
BFSR bit @ssignments ..o B3-730
UFSR bit aSSigNmMEeNtsccoeiiiiiiiii e e B3-731
HFSR bit @ssignments ... B3-733
MMFAR bit @SSIGNMENESoouiiiiiiii e B3-734
BFAR bit @SSIGNMENESocoiiiiiiieiiii e B3-734
CPACR bit @SSigNMENTSccooiiiiiiiiiiiie e B3-735
FPCCR bit @sSignmentscooiiiiiiiiiiieee e B3-737
FPCAR bit @ssignmentsooiiiiiiiiie e B3-740
FPDSCR bit assignments ... B3-740
ICTR bit @SSIGNMENTSeeiiiiieiiie e e e B3-741
STIR bit @SSIGNMENTSeviiiiiii e B3-742
SYST_CSR bit assignmentsccccovuiiiiiiiiiiii e B3-746
SYST_RVR bit assignmentsccoociviiiiiiii e B3-747
SYST_CVR bit @assignments ... B3-748
SYST_CALIB Register bit assignmentsccccoooiiiiiiiiiieee B3-749
NVIC_ISERnN Register bit assignmentscccccveiieeiiiieniee e B3-755
NVIC_ICERN Register bit assignmentsccocccviiiiieiiiiiiie e B3-756
NVIC_ISPRn Register bit assignmentsccocceevieiiiiiiiniiee e B3-757
NVIC_ICPRn Register bit assignmentsccccceiiiiiiiiinie e B3-758
NVIC_IABRn Register bit assignmentscccccceevieeiiiiiniiee e B3-759
NVIC_IPRn Register bit assignmentscccooiiiiiiiiiiiiee e, B3-760
MPU_TYPE register bit assignmentsccccoiiiiiiiiiiic e, B3-766
MPU_CTRL Register bit assignmentsccccooooiiiieeiiiiie e B3-767
MPU_RNR bit @SSigNMENtScoooiiiiiiiiiiiiiie e e B3-769
MPU_RBAR bit @SSIgNMeNtScooiiiiiiiiiiiiiee e B3-770
MPU_RASR bit @SSIGNMENtSoooiiiiiiiiiiiiiiee e B3-772
Handshake between DBGRESTART and DBGRESTARTED C1-821
DFSR bit @SSignmEeNtscccceiiiiiiiii e C1-829
DHCSR bit @SSigNmENtSooeiiiiiiiee e C1-830
DCRSR bit @assignmentscccooieiiiiie i C1-834
DCRDR bit @SSIgNMEeNtsoiiiiiiiiiiieiiiee e C1-837
DEMCR bit @SSIGNMENTSccviiiiiiiiiiieeiie e C1-839
Relationship between ITM and other debug componentsc.c......... C1-848
ITM_STIMx register bit assignmentscccooveiiiiiiniiie e C1-850
ITM_TERX bit @SSignmentsccueiiiiiiiiiiieee e C1-851
ITM_TPR bit @SSIQNMENTSoooiiiiiiiiieieiee e C1-852
ITM_TCR bit @Ssignmentscccooieiiiiiiiii e C1-853
DWT_CTRL register bit assignmentsccccovvieiiiieeiiiiiene e C1-880
DWT_CYCCNT register bit assignments ..o C1-884
DWT_CPICNT register bit assignmentsccoccceiiieiiiiiiiee e C1-885
DWT_EXCCNT register bit assignmentscccoccceevieeiiiieniee e C1-886
DWT_SLEEPCNT register bit assignmentsccccccovciiivieniiceiee e, C1-887
DWT_LSUCNT register bit assignmentsccccceevrieeiiiiiiniiee e C1-888

xviii

ARM DDI 0403D
1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

List of Figures

Figure C1-18 DWT_FOLDCNT register bit assignmentscccceveiiiiiieniiiiiee e C1-889
Figure C1-19 DWT_PCSR bit @SSIGNMENLScccuiieiiiiiiiieeeiie e C1-890
Figure C1-20 DWT_COMPN register bit assignmentsccccoecviivieiiiiiiiee e C1-891
Figure C1-21 DWT_MASKnN register bit assignmentscccooeeiiiieeiiiiiiiee e C1-892
Figure C1-22 DWT_FUNCTIONR register bit assignmentsccccccevveeiniiieniiee e, C1-893
Figure C1-23 TPIU_SSPSR bit assignments ... C1-899
Figure C1-24 TPIU_CSPSR bit assignments ..o C1-899
Figure C1-25 TPIU_ACPR bit @ssignmentsccccooiiiiiiiiiiie e C1-900
Figure C1-26 TPIU_SPPR bit @SSignmeNtsccccoiiuiiiiiiiiiiieeeiieeeiee e C1-901
Figure C1-27 TPIU_TYPE register bit assignmentsccccocoviiiiiineeeeeee C1-902
Figure C1-28 FP_CTRL register bit assignmentscccccoeiiiiiiini e C1-906
Figure C1-29 FP_REMARP register bit assignments ..o C1-908
Figure C1-30 FP_COMPnN register bit assignmentsccoooiiiiiiiii e, C1-909
Figure D-1 Convention for packet descriptionsccccccovveieiiiiiiie e AppxD-933
Figure D-2 Minimum Synchronization packet formatccccooiiiiiiii AppxD-934
Figure D-3 Overflow packet formatcoccoiiiiiii AppxD-936
Figure D-4 Local timestamp packet format 1 ... AppxD-936
Figure D-5 Local timestamp packet for a Local timestamp value of 0b11001001 . AppxD-938
Figure D-6 Local timestamp packet format 2 ..o, AppxD-938
Figure D-7 GTS1 Global timestamp packet formatccocceeiiiiiiiic, AppxD-939
Figure D-8 GTS2 Global timestamp packet formatccocceeiviiiiiice e, AppxD-940
Figure D-9 Extension packet formatcccoeiiiiiiiii i AppxD-940
Figure D-10 Extension packet format for stimulus port page number AppxD-941
Figure D-11 Instrumentation packet formatcccooiiiiii e AppxD-942
Figure D-12 Instrumentation packet for a halfword write of 0X03A1cccvvvveeeeeeen. AppxD-942
Figure D-13 Hardware source packet formatccccooeviiiiiiiiiicee e, AppxD-943
Figure D-14 Event packet formatccocooiiiiiiiii e AppxD-944
Figure D-15 Exception trace packet formatccocceeeiiiiiiiii i AppxD-945
Figure D-16 Periodic PC sample packet formatcccoooiiiiiiiiiiee AppxD-946
Figure D-17 Periodic PC sleep packet formatccoceviiiiiiiiiiiiecee AppxD-947
Figure D-18 Data trace packet header formatccccoiiiiiiiii AppxD-948
Figure D-19 Data trace PC value packet format, IDs 8, 10, 12, 0r 14 AppxD-949
Figure D-20 Data trace address offset packet format, IDs 9, 11, 13, 0or 15 AppxD-949
Figure D-21 Data trace data value packet format, IDs 16-23c..cceecveveeeinnnenn. AppxD-950
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. Xix

1D021310

Non-Confidential, Unrestricted Access

List of Figures

XX Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Preface

This preface describes the contents of this manual, then lists the conventions and terminology it uses.

About this manual on page xxii
Using this manual on page xxiii
Conventions on page Xxvi
Further reading on page xxvii

Feedback on page xxviii.

ARM DDI 0403D

1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

XXi

Preface

About this manual

This manual documents the Microcontroller profile of version 7 of the ARM® Architecture, the ARMv7-M
architecture profile. For short definitions of all the ARMv7 profiles see About the ARMv7 architecture, and
architecture profiles on page A1-32.

The manual has the following parts:

Part A

Part B

Part C

Appendices

The application level programming model and memory model information along with the
instruction set as visible to the application programmer.

This is the information required to program applications or to develop the toolchain
components (compiler, linker, assembler and disassembler) excluding the debugger. For
ARMV7-M, this is almost entirely a subset of material common to the other two profiles.
Instruction set details that differ between profiles are clearly stated.

Note

All ARMV7 profiles support a common procedure calling standard, the ARM Architecture
Procedure Calling Standard (AAPCS).

The system level programming model and system level support instructions required for
system correctness. The system level supports the ARMv7-M exception model. It also
provides features for configuration and control of processor resources and management of
memory access rights.

This is the information in addition to Part A required for an operating system (OS) and/or
system support software. It includes details of register banking, the exception model,
memory protection (management of access rights) and cache support.

Part B is profile specific. ARMv7-M introduces a new programmers’ model and as such has
some fundamental differences at the system level from the other profiles. As ARMv7-M is
a memory-mapped architecture, the system memory map is documented here.

The debug features to support the ARMv7-M debug architecture and the programming
interface to the debug environment.

This is the information required in addition to Parts A and B to write a debugger. Part C
covers details of the different types of debug:

. halting debug and the related Debug state

. exception-based monitor debug
. non-invasive support for event generation and signalling of the events to an external
agent.

This part is profile specific and includes several debug features that are supported only in
the ARMv7-M architecture profile.

The appendices give information that relates to, but is not part of, the ARMv7-M
architecture profile specification.

XXii

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Preface

Using this manual

The information in this manual is organized into four parts as described below.

Part A, Application level architecture
Part A describes the application level view of the architecture. It contains the following chapters:

Chapter Al Introduction
Introduces the ARMv7 architecture, the architecture profiles it defines, and the ARMv7-M
profile defined by this manual.

Chapter A2 Application Level Programmers’ Model
Gives an application-level view of the ARMv7-M programmers’ model, including a
summary of the exception model.

Chapter A3 ARM Architecture Memory Model
Gives an application-level view of the ARMv7-M memory model, including the ARM
memory attributes and memory ordering model.

Chapter A4 The ARMv7-M Instruction Set
Describes the ARMv7-M Thumb® instruction set.

Chapter AS The Thumb Instruction Set Encoding

Describes the encoding of the Thumb instruction set.

Chapter A6 The Floating-Point Instruction Set Encoding

Describes the encoding of the floating-point instruction set extension of the Thumb
instruction set. The optional floating point (FP) architecture extension provides these
additional instructions.

Chapter A7 Instruction Details

Provides detailed reference material on each Thumb instruction, arranged alphabetically by
instruction mnemonic, including summary information for system-level instructions.

Part B, System level architecture

Part B describes the system level view of the architecture. It contains the following chapters:

Chapter B1 System Level Programmers’ Model

Gives a system-level view of the ARMv7-M programmers’ model, including the exception
model.

Chapter B2 System Memory Model
Provides a pseudocode description of the ARMv7-M memory model.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. xxiii
1D021310 Non-Confidential, Unrestricted Access

Preface

Chapter B3 System Address Map

Describes the ARMv7-M system address map, including the memory-mapped registers and
the optional Protected Memory System Architecture (PMSA).

Chapter B4 The CPUID Scheme

Describes the CPUID scheme. This provides registers that identify the architecture version
and many features of the processor implementation.

Chapter B5 System Instruction Details

Provides detailed reference material on the system-level instructions.

Part C, Debug architecture
Part C describes the debug architecture. It contains the following chapter:

Chapter C1 ARMv7-M Debug
Describes the ARMv7-M debug architecture.

Part D, Appendices
This manual contains a glossary and the following appendices:

Appendix A ARMv7-M CoreSight Infrastructure IDs

Summarizes the ARM CoreSight™ compatible ID registers used for ARM architecture
infrastructure identification.

Appendix B Legacy Instruction Mnemonics

Describes the legacy mnemonics and their Unified Assembler Language (UAL) equivalents.

Appendix C Deprecated Features in ARMv7-M

Lists the deprecated architectural features, with references to their descriptions in parts A to
C of the manual where appropriate.

Appendix D Debug ITM and DWT Packet Protocol

Describes the debug trace packet protocol used to export ITM and DWT sourced
information.

Appendix E ARMv7-R Differences
Summarizes the differences between the ARMv7-R and ARMv7-M profiles.

Appendix F Pseudocode Definition

Provides the formal definition of the pseudocode used in this manual.

Appendix G Pseudocode Index

An index to definitions of pseudocode operators, keywords, functions, and procedures.

XXiv Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Preface

Appendix H Register Index

An index to register descriptions in the manual.

Glossary
Glossary of terms used in this manual. The glossary does not include terms associated with
the pseudocode.
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. XXV

1D021310 Non-Confidential, Unrestricted Access

Preface

Conventions

This manual employs typographic and other conventions intended to improve its ease of use.

General typographic conventions

monospaced Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other
items appearing in assembler syntax descriptions, pseudocode, and source code
examples.

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Denotes signal names and is used for terms in descriptive lists, where appropriate.
SMALL CAPITALS Used for a few terms that have specific technical meanings, that are included in the
Glossary.
XXVi Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D

Non-Confidential, Unrestricted Access 1D021310

Preface

Further reading

This section lists publications that provide additional information on the ARM architecture and ARM family
of processors. This manual provides architecture information, the contract between hardware and software
for development of ARM compliant processors, compiler and debug tools development and software to run
on the ARM targets. A Technical Reference Manual (TRM) describes the IMPLEMENTATION DEFINED
features of a processor that implements this architecture. See the device specification published by the ARM
silicon partner for additional system details.

ARM periodically provides updates and corrections to its documentation. For the latest information and
errata, some materials are published at http: //www.arm. com. Alternatively, contact your distributor, or silicon
partner who will have access to the latest published ARM information, as well as information specific to the
device of interest. Your local ARM office has access to the latest published ARM information.

ARM publications

This document defines the ARMv7-M architecture profile. Other publications relating to this profile, and to
the ARM debug architecture are:

. Cortex-M3 Technical Reference Manual (ARM DDI 0337)

. Procedure Call Standard for the ARM Architecture (ARM GENC 003534)

. Run-time ABI for the ARM Architecture (ARM THI 0043)

. ARM Debug Interface v5 Architecture Specification (ARM IHI 0031)

. CoreSight Architecture Specification (ARM IHI 0029)

. CoreSight Components Technical Reference Manual (ARM DDI 0314)

. Embedded Trace Macrocell Architecture Specification (ARM IHI 0014)

. CoreSight Program Flow Trace Architecture Specification (ARM IHI 0035).

For information about the ARMv6-M architecture profile see the ARMv6-M Architecture Reference Manual
(ARM DDI 0419).

For information about the ARMv7-A and -R profiles see the ARM Architecture Reference Manual,
ARMv7-A and ARMv7-R edition (ARM DDI 0406).

External publications
The following books are referred to in this manual:

. ANSI/IEEE Std 754-1985 and ANSI/IEEE Std 754-2008, /[EEE Standard for Binary Floating-Point
Arithmetic. Unless otherwise indicated, references to IEEE 754 refer to either issue of the standard.

Note

This document does not adopt the terminology defined in the 2008 issue of the standard.

. JEP106, Standard Manufacturers Identification Code, JEDEC Solid State Technology Association.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. XXVii
1D021310 Non-Confidential, Unrestricted Access

Preface

Feedback

ARM welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this manual, send e-mail to errata@arm.com. Give:

. the title

. the number, ARM DDI 0403D

. the page numbers to which your comments apply
. a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

XXViii Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Part A

Application Level Architecture

Chapter A1
Introduction

This chapter introduces the ARMv7 architecture, the architecture profiles it defines, and the ARMv7-M
profile defined by this manual. It contains the following sections:

. About the ARMv7 architecture, and architecture profiles on page A1-32
. The ARMv7-M architecture profile on page A1-33
. Architecture extensions on page A1-35.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A1-31
1D021310 Non-Confidential, Unrestricted Access

Introduction

A1.1 About the ARMv7 architecture, and architecture profiles
ARMV7 is documented as a set of architecture profiles. The profiles are defined as follows:

ARMV7-A The application profile for systems supporting the ARM and Thumb instruction sets, and
requiring virtual address support in the memory management model.

ARMV7-R The realtime profile for systems supporting the ARM and Thumb instruction sets, and
requiring physical address only support in the memory management model

ARMV7-M The microcontroller profile for systems supporting only the Thumb instruction set, and
where overall size and deterministic operation for an implementation are more important
than absolute performance.

While profiles were formally introduced with the ARMv7 development, the A-profile and R-profile have
implicitly existed in earlier versions, associated with the Virtual Memory System Architecture (VMSA) and
Protected Memory System Architecture (PMSA) respectively.

A1-32 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

A1.2

A1.21

Introduction

The ARMv7-M architecture profile

The ARM architecture has evolved through several major revisions to a point where it supports
implementations across a wide spectrum of performance points, with over a billion parts per annum being
produced. The latest version, ARMv7, formally recognizes this diversity by defining a set of architecture
profiles that tailor the architecture to different market requirements. A key factor is that the application level
is consistent across all profiles, and the bulk of the variation is at the system level.

The introduction of Thumb-2 technology in ARMv6T2 provided a balance to the ARM and Thumb
instruction sets, and the opportunity for the ARM architecture to be extended into new markets, in particular
the microcontroller marketplace. To take maximum advantage of this opportunity, ARM has introduced the
ARMV7-M architecture profile for microcontroller implementations, complementing its strengths in the
high performance and real-time embedded markets. ARMv7-M is a Thumb-only profile with a new system
level programmers’ model.

Key criteria for ARMv7-M implementations are as follows:

. Enable implementations with industry leading power, performance and area constraints:
— provides opportunities for simple pipeline designs offering leading edge system performance
levels in a broad range of markets and applications.
. Highly deterministic operation:
— single or low cycle count execution
— minimal interrupt latency, with short pipelines

— cacheless operation.
. Excellent C/C++ target. This aligns with the ARM programming standards in this area:

— exception handlers are standard C/C++ functions, entered using standard calling conventions.

. Designed for deeply embedded systems:
— low pincount devices

— enables new entry level opportunities for the ARM architecture.
. Provides debug and software profiling support for event driven systems.

This manual is specific to the ARMv7-M profile.

The ARMv7-M instruction set

ARMV7-M only supports execution of Thumb instructions. The Floating-point (FP) extension adds
single-precision floating-point instructions to the Thumb instruction set. For more information see
Chapter A4 The ARMv7-M Instruction Set

For details of the instruction encodings see:
. Chapter AS The Thumb Instruction Set Encoding
. Chapter A6 The Floating-Point Instruction Set Encoding.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A1-33

1D021310

Non-Confidential, Unrestricted Access

Introduction

For descriptions of the instructions supported, see:
. Chapter A7 Instruction Details
. Chapter B5 System Instruction Details.

A1-34 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Introduction

A1.3 Architecture extensions

This manual describes the following extensions to the ARMv7-M architecture profile:

DSP extension

This optional extension adds the ARM Digital Signal Processing (DSP) instructions
to the ARMv7-M Thumb instruction set. These instructions include saturating and
unsigned Single Instruction Multiple Data (SIMD) instructions.

An ARMv7-M implementation that includes the DSP extension is called an
ARMV7E-M implementation, and Chapter A7 Instruction Details identifies the
added instructions as ARMvV7E-M instructions.

Floating-point extension

This optional extension adds single-precision floating point instructions to the
ARMvV7-M Thumb instruction set. This is a single-precision implementation of the
VFPv4-D16 extension defined for the ARMv7-A and ARMv7-R architecture
profiles.

Note

In the ARMv7-A and ARMv7-R architecture profiles, the optional floating-point
extensions are called VFP extensions. This name is historic, and the abbreviation of
the corresponding ARMv7-M profile extension is FP extension. The instructions
introduced in the ARMv7-M FP extension are identical to the equivalent
single-precision floating-point instructions in the ARMv7-A and ARMv7-R
profiles, and use the same instruction mnemonics. These mnemonics start with V.

The Floating-point extension is called the FPv4-SP extension. and Chapter A7
Instruction Details identifies the added instructions as FPv4-SP instructions.

Based on the VFP implementation options defined for the ARMv7-A and
ARMV7-R architecture profiles, a full characterization of the ARMv7-M
Floating-point extension is FPv4-SP-D16-M. Some software tools might require
this characterization.

ARM DDI 0403D
1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A1-35

Non-Confidential, Unrestricted Access

Introduction

A1-36 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Chapter A2
Application Level Programmers’ Model

This chapter gives an application-level view of the ARMv7-M programmers’ model. It contains the
following sections:

. About the application level programmers’ model on page A2-38
. ARM processor data types and arithmetic on page A2-39
. Registers and execution state on page A2-46
. Exceptions, faults and interrupts on page A2-50
. Coprocessor support on page A2-52
. The optional Floating-point extension on page A2-53.
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-37

1D021310 Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

A2.1

A2.1.1

About the application level programmers’ model
This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support
application execution under an operating system. That information is given in Chapter B1 System Level
Programmers’ Model. System level support requires access to all features and facilities of the architecture,
a level of access generally referred to as privileged operation. System code determines whether an
application runs in a privileged or unprivileged manner. An operating system supports both privileged and
unprivileged operation, but an application usually runs unprivileged.

An application running unprivileged:

. means the operating system can allocate system resources to the application, as either private or
shared resources

. provides a degree of protection from other processes and tasks, and so helps protect the operating
system from malfunctioning applications.

Running unprivileged means the processor is in Thread mode, see Interaction with the system level
architecture.

Interaction with the system level architecture

Thread mode is the fundamental mode for application execution in ARMv7-M and is selected on reset.
Thread mode execution can be unprivileged or privileged. Thread mode can raise a supervisor call using the
SVC instruction, generating a Supervisor Call (SVCall) exception that the processor takes in Handler mode.
Alternatively, Thread mode can handle system access and control directly.

All exceptions execute in Handler mode. SVCall handlers manage resources, such as interaction with
peripherals, memory allocation and management of software stacks, on behalf of the application.

This chapter only provides system level information that is needed to understand operation at application
level. Where appropriate it:

. gives an overview of the system level information

. gives references to the system level descriptions in Chapter B1 System Level Programmers’ Model
and elsewhere.

A2-38

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

A2.2

A2.21

Application Level Programmers’ Model

ARM processor data types and arithmetic

ARMvV7-M processors support the following data types in memory:
Byte 8 bits

Halfword 16 bits

Word 32 bits

Processor registers are 32 bits in size. The instruction set contains instructions supporting the following data
types held in registers:

. 32-bit pointers

. unsigned or signed 32-bit integers

. unsigned 16-bit or 8-bit integers, held in zero-extended form
. signed 16-bit or 8-bit integers, held in sign-extended form

. unsigned or signed 64-bit integers held in two registers.

Load and store operations can transfer bytes, halfwords, or words to and from memory. Loads of bytes or
halfwords zero-extend or sign-extend the data as it is loaded, as specified in the appropriate load instruction.

The instruction sets include load and store operations that transfer two or more words to and from memory.
You can load and store 64-bit integers using these instructions.

When any of the data types is described as unsigned, the N-bit data value represents a non-negative integer
in the range 0 to 2N-1, using normal binary format.

When any of these types is described as signed, the N-bit data value represents an integer in the range -2N-1
to +2N-1-1, using two's complement format.

Direct instruction support for 64-bit integers is limited, and most 64-bit operations require sequences of two
or more instructions to synthesize them.

Integer arithmetic

The instruction set provides operations on the values in registers, including bitwise logical operations,
shifts, additions, subtractions, and multiplications. This manual describes these operations using
pseudocode, usually in one of the following ways:

. Direct use of the pseudocode operators and built-in functions defined in Operators and built-in
functions on page AppxF-967.

. Using pseudocode helper functions defined in the main text.

. Using a sequence of the form:

1. Use of the SInt(), UInt(), and Int() built-in functions to convert the bitstring contents of the
instruction operands to the unbounded integers that they represent as two's complement or
unsigned integers. Converting bitstrings to integers on page AppxF-970 defines these
functions.

2. Use of mathematical operators, built-in functions and helper functions on those unbounded
integers to calculate other two's complement or unsigned integers.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-39

1D021310

Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

3. Use of one of the following to convert an unbounded integer result into a bitstring result that
can be written to a register:

. the bitstring extraction operator defined in Bitstring extraction on page AppxF-968
. the saturation helper functions described in Pseudocode details of saturation on
page A2-44.

Appendix F Pseudocode Definition gives a general description of the ARM pseudocode.

Shift and rotate operations
The following types of shift and rotate operations are used in instructions:

Logical Shift Left

(LSL) moves each bit of a bitstring left by a specified number of bits. Zeros are shifted in at
the right end of the bitstring. Bits that are shifted off the left end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Logical Shift Right

(LSR) moves each bit of a bitstring right by a specified number of bits. Zeros are shifted in
at the left end of the bitstring. Bits that are shifted off the right end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Arithmetic Shift Right

(ASR) moves each bit of a bitstring right by a specified number of bits. Copies of the leftmost
bit are shifted in at the left end of the bitstring. Bits that are shifted off the right end of the
bitstring are discarded, except that the last such bit can be produced as a carry output.

Rotate Right (ROR) moves each bit of a bitstring right by a specified number of bits. Each bit that is shifted
off the right end of the bitstring is re-introduced at the left end. The last bit shifted off the
the right end of the bitstring can be produced as a carry output.

Rotate Right with Extend

(RRX) moves each bit of a bitstring right by one bit. The carry input is shifted in at the left
end of the bitstring. The bit shifted off the right end of the bitstring can be produced as a

carry output.

Pseudocode details of shift and rotate operations
These shift and rotate operations are supported in pseudocode by the following functions:

// LSL_C()
J/—

(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = x : Zeros(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;

A2-40

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

return (result, carry_out);

/7 15L0)
I

bits(N) LSL(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSL_C(x, shift);
return result;

// LSRCO)
/g

(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = ZeroExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

// LSRQ)
/] =====

bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSR_C(x, shift);
return result;

// ASR_C()
/] =======

(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = SignExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

/1 ASRQ)
/] mmmm

bits(N) ASR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = ASR_C(x, shift);
return result;

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-41
1D021310 Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

// ROR_C()
/] =======

(bits(N), bit) ROR_C(bits(N) x, integer shift)
assert shift != 0;
m = shift MOD N;
result = LSR(x,m) OR LSL(x,N-m);
carry_out = result<N-1>;
return (result, carry_out);

// RRQ)
/] =====

bits(N) ROR(bits(N) x, integer shift)
if n == 0 then
result = x;
else
(result, -) = ROR_C(x, shift);
return result;

// RRX_C()
J—

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
result = carry_in : x<N-1:1>;
carry_out = x<0>;
return (result, carry_out);

1/ RRX()
/1 =mms

bits(N) RRX(bits(N) x, bit carry_in)
(result, -) = RRX_C(x, carry_in);
return result;

A2-42 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

Pseudocode details of addition and subtraction

In pseudocode, addition and subtraction can be performed on any combination of unbounded integers and
bitstrings, provided that if they are performed on two bitstrings, the bitstrings must be identical in length.
The result is another unbounded integer if both operands are unbounded integers, and a bitstring of the same
length as the bitstring operand(s) otherwise. For the precise definition of these operations, see Addition and
subtraction on page AppxF-971.

The main addition and subtraction instructions can produce status information about both unsigned carry
and signed overflow conditions. This status information can be used to synthesize multi-word additions and
subtractions. In pseudocode the AddwithCarry() function provides an addition with a carry input and carry
and overflow outputs:

// AddwithCarry()
/] ==m=mmmm====

(bits(N), bit, bit) AddwithCarry(bits(N) x, bits(N) y, bit carry_in)
unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
signed_sum = SInt(x) + SInt(y) + UInt(carry_in);

result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
carry_out = if UInt(result) == unsigned_sum then ‘0’ else ‘1’;
overflow = if SInt(result) == signed_sum then ‘@’ else ‘1’;

return (result, carry_out, overflow);
An important property of the AddwithCarry() function is that if:

(result, carry_out, overflow) = AddwithCarry(x, NOT(y), carry_in)

then:

. If carry_in == '1', then result == x-y with overflow == '1' if signed overflow occurred during the
subtraction and carry_out == '1' if unsigned borrow did not occur during the subtraction (that is, if
X >=Yy).

. If carry_in == '0', then result == x-y-1 with overflow == '1' if signed overflow occurred during
the subtraction and carry_out == '1" if unsigned borrow did not occur during the subtraction (that is,
if x > y).

Together, these mean that the carry_in and carry_out bits in AddWithCarry() calls can act as NOT borrow
flags for subtractions as well as carry flags for additions.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-43

1D021310

Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

Pseudocode details of saturation

Some instructions perform saturating arithmetic, that is, if the result of the arithmetic overflows the
destination signed or unsigned N-bit integer range, the result produced is the largest or smallest value in that
range, rather than wrapping around modulo 2N. This is supported in pseudocode by the SignedSatQ() and
UnsignedSatQ() functions when a boolean result is wanted saying whether saturation occurred, and by the
SignedSat() and UnsignedSat() functions when only the saturated result is wanted:

// SignedSatQ()
/] =====m=====

(bits(N), boolean) SignedSatQ(integer i, integer N)

if i > 2A(N-1) - 1 then

result = 2A(N-1) - 1; saturated = TRUE;
elsif i < -(2A(N-1)) then

result = -(2A(N-1)); saturated = TRUE;
else

result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

// UnsignedSatQ()
/] =m==m=memmemes

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
if i > 2AN - 1 then
result = 2AN - 1; saturated = TRUE;
elsif i < 0 then
result = 0; saturated = TRUE;
else
result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

// SignedSat()
// mmmmmmmmmmm

bits(N) SignedSat(integer i, integer N)
(result, -) = SignedSatQ(i, N);
return result;

// UnsignedSat()
/] ===mm====m===

bits(N) UnsignedSat(integer i, integer N)
(result, -) = UnsignedSatQ(i, N);
return result;

SatQ(i, N, unsigned) returns either UnsignedSatQ(i, N) or SignedSatQ(i, N) depending on the value of its
third argument, and Sat(i, N, unsigned) returns either UnsignedSat(i, N) or SignedSat(i, N) depending on
the value of its third argument:

A2-44

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

// $atQQ)
// mmmmmn

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);

// sat()
/] ===

bits(N) Sat(integer i, integer N, boolean unsigned)
result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
return result;

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-45
1D021310 Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

A2.3

A2.3.1

Registers and execution state

The application level programmers’ model provides details of the general-purpose and special-purpose
registers visible to the application programmer, the ARM memory model, and the instruction set used to
load registers from memory, store registers to memory, or manipulate data (data operations) within the
registers.

Applications often interact with external events. A summary of the types of events recognized in the
architecture, along with the mechanisms provided in the architecture to interact with events, is included in
Exceptions, faults and interrupts on page A2-50). How events are handled is a system level topic described
in ARMv7-M exception model on page B1-631.

ARM core registers

There are thirteen general-purpose 32-bit registers, R0-R12, and an additional three 32-bit registers that
have special names and usage models.

SP Stack pointer, used as a pointer to the active stack. For usage restrictions see Use of 0b1101
as a register specifier on page A5-154. This is preset to the top of the Main stack on reset.
See The SP registers on page B1-623 for more information. SP is sometimes referred to as
R13.

LR Link Register, used to store the Return Link. This is a value that relates to the return address
from a subroutine that is entered using a Branch with Link instruction. A reset sets this
register to OxFFFFFFFF. The reset value causes a fault condition if the processor uses it when
attempting a subroutine return. The LR is also updated on exception entry, see Exception
entry behavior on page B1-643. LR is sometimes referred to as R14.

Note

LR can be used for other purposes when it is not required to support a return from a
subroutine.

PC Program Counter. For details on the usage model of the PC see Use of 0b1111 as a register
specifier on page A5-153. The PC is loaded with the reset handler start address on reset. PC
is sometimes referred to as R15.

Pseudocode details of ARM core register operations

In pseudocode, the R[] function is used to:
. Read or write RO-R12, SP, and LR, using n == 0-12, 13, and 14 respectively.
. Read the PC, using n == 15.

This function has prototypes:

bits(32) R[integer n]
assert n >= 0 & n <= 15;

R[integer n] = bits(32) value

A2-46

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

assert n >= 0 && n <= 14;

For more information about the R[] function, see Pseudocode details for ARM core register access on
page B1-629. Writing an address to the PC causes either a simple branch to that address or an interworking
branch that, in ARMv7-M, must select the Thumb instruction set to execute after the branch.

Note

The following pseudocode defines behavior in ARMv7-M. It is much simpler than the equivalent
pseudocode function definitions that apply to older ARM architecture variants and other ARMv7 profiles.

The BranchWritePC() function performs a simple branch:

// BranchWritePC()
/] =======m===a=s

BranchWritePC(bits(32) address)
BranchTo(address<31:1>:’0");

The BXWritePC() and BLXWritePC() functions each perform an interworking branch:

// BXWritePC()
/] ===mmm==e==

BXWritePC(bits(32) address)
if CurrentMode == Mode_Handler && address<31:28> == ‘1111’ then
ExceptionReturn(address<27:0>);
else
EPSR.T = address<@>; // if EPSR.T == 0, a UsageFault(‘Invalid State’)
// is taken on the next instruction
BranchTo(address<31:1>:°0");

// BLXWritePC()
/] ==mm=m=m====

BLXWritePC(bits(32) address)
EPSR.T = address<0>; // if EPSR.T == 0, a UsageFault(‘Invalid State’)
// is taken on the next instruction
BranchTo(address<31:1>:"0");

The LoadwritePC() and ALUWritePC() functions are used for two cases where the behavior was systematically
modified between architecture versions. The functions simplify to aliases of the branch functions in the
M-profile architecture variants:

// LoadWritePC()
/R

LoadWritePC(bits(32) address)
BXWritePC(address);

// ALUWritePC()

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-47
1D021310 Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

ALUWritePC(bits(32) address)
BranchWritePC(address);
A2.3.2 The Application Program Status Register (APSR)

Program status is reported in the 32-bit Application Program Status Register (APSR). The APSR bit
assignments are:

313029 28 27 26 2019 16 15 0

N|lz|C[V|Q Reserved GE[3:0] Reserved

APSR bit fields are in the following categories:

. Reserved bits are allocated to system features or are available for future expansion. Further
information on currently allocated reserved bits is available in The special-purpose program status
registers, xPSR on page B1-624. Application level software must ignore values read from reserved
bits, and preserve their value on a write. The bits are defined as UNK/SBZP.

. Flags that can be updated by many instructions:

N, bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
is regarded as a two's complement signed integer, then N == 1 if the result is negative and
N ==0 if it is positive or zero.

Z, bit [30] Zero condition code flag. Set to 1 if the result of the instruction is zero, and to 0 otherwise.
A result of zero often indicates an equal result from a comparison.

C, bit [29] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28] Overflow condition code flag. Set to 1 if the instruction results in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27] Set to 1 if a SSAT or USAT instruction changes the input value for the signed or unsigned
range of the result. In a processor that implements the DSP extension, the processor sets
this bit to 1 to indicate an overflow on some multiplies. Setting this bit to 1 is called
saturation.

GE[3:0], bits[19:16], DSP extension only

Greater than or Equal flags. SIMD instructions update these flags to indicate the results
from individual bytes or halfwords of the operation. Software can use these flags to
control a later SEL instruction. For more information, see SEL on page A7-425.

In a processor that does not implement the DSP extension these bits are reserved.

A2.3.3 Execution state support

ARMvV7-M only executes Thumb instructions, and therefore always executes instructions in Thumb state.
See Chapter A7 Instruction Details for a list of the instructions supported.

A2-48 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

A2.3.4

Application Level Programmers’ Model

In addition to normal program execution, the processor can operate in Debug state, described in Chapter C1
ARMv7-M Debug.

Privileged execution

Good system design practice requires the application developer to have a degree of knowledge of the
underlying system architecture and the services it offers. System support requires a level of access generally
referred to as privileged operation. The system support code determines whether applications run in a
privileged or unprivileged manner. Where both privileged and unprivileged support is provided by an
operating system, applications usually run unprivileged, allowing the operating system to allocate system
resources for private or shared use by the application, and to provide a degree of protection with respect to
other processes and tasks.

Thread mode is the fundamental mode for application execution in ARMv7-M. Thread mode is selected on
reset, and can execute in a privileged or unprivileged manner depending on the system environment.
Privileged execution is required to manage system resources in many cases. When code is executing
unprivileged, Thread mode can execute an SVC instruction to generate a supervisor call exception. Privileged
execution in Thread mode can raise a supervisor call using SVC or handle system access and control directly.

All exceptions execute as privileged code in Handler mode. See ARMv7-M exception model on page B1-631
for details. Supervisor call handlers manage resources on behalf of the application such as interaction with
peripherals, memory allocation and management of software stacks.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-49

1D021310

Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

A2.4

A2.41

Exceptions, faults and interrupts

An exception can be caused by the execution of an exception generating instruction or triggered as a
response to a system behavior such as an interrupt, memory management protection violation, alignment or
bus fault, or a debug event. Synchronous and asynchronous exceptions can occur within the architecture.

How events are handled is a system level topic described in ARMv7-M exception model on page B1-631.

System-related events

The following types of exception are system-related. Where there is direct correlation with an instruction,
reference to the associated instruction is made.

Supervisor calls are used by application code to request a service from the underlying operating system.
Using the SVC instruction, the application can instigate a supervisor call for a service requiring privileged
access to the system.

Several forms of Fault can occur:
. Instruction execution related errors
. Data memory access errors can occur on any load or store

. Usage faults from a variety of execution state related errors. Attempting to execute an undefined
instruction is an example cause of a UsageFault exception.

. Debug events can generate a DebugMonitor exception.

Faults in general are synchronous with respect to the associated executing instruction. Some system errors
can cause an imprecise exception where it is reported at a time bearing no fixed relationship to the
instruction that caused it.

The processor always treats interrupts as asynchronous to the program flow.

An ARMv7-M implementation includes:
. A system timer, SysTick, and associated interrupt, see The system timer, SysTick on page B3-744.

. A deferred Supervisor call, PendSV. A handler uses this when it requires service from a Supervisor,
typically an underlying operating system. The PendSV handler executes when the processor takes the
associated exception. PendSV is supported by the ICSR, see Interrupt Control and State Register,
ICSR on page B3-713. For more information see Use of SVCall and PendSV to avoid critical code
regions on page B1-641.

Note

— The name of this exception, PendSV, indicates that the processor must set the
ICSR.PENDSVSET bit to 1 to make the associated exception pending. The exception priority
model then determines when the processor takes the exception. This is the only way a
processor can enter the PendSV exception handler.

— For the definition of a Pending exception, see Exceptions on page B1-619.

A2-50

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

— An application uses the SVC instruction if it requires a Supervisor call that executes
synchronously with the program execution.

. A controller for external interrupts, see Nested Vectored Interrupt Controller, NVIC on page B3-750.
. A BKPT instruction, that generates a debug event, see Debug event behavior on page C1-823.

For power or performance reasons, software might want to notify the system that an action is complete, or
provide a hint to the system that it can suspend operation of the current task. The ARMv7-M architecture
provides instruction support for the following:

. Send Event and Wait for Event instructions, see SEV on page A7-426 and WFE on page A7-610

. a Wait For Interrupt instruction,. see WFI on page A7-611.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-51

1D021310

Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

A2.5 Coprocessor support
An ARMv7-M implementation can optionally support coprocessors. If it does not support them, it treats all
coprocessors as non-existent. Possible coprocessors number from 0 to 15, and are called CP0-CP15. ARM
reserves CP8 to CP15, and CPO to CP7 are IMPLEMENTATION DEFINED, subject to the constraints of the
coprocessor instructions.
Coprocessors 10 and 11 support the ARMv7-M Floating-point (FP) extension, that provides
single-precision floating point operations. On an ARMv7-M implementation that includes the FP extension,
software must enable access to both CP10 and CP11 before it can use any features of the extension. For more
information see The optional Floating-point extension on page A2-53.
If software issues a coprocessor instruction to a non-existent or disabled coprocessor, the processor
generates a NOCP UsageFault, see Fault behavior on page B1-669.
If software issues an unknown instruction to an enabled coprocessor, the processor generates an
UNDEFINSTR UsageFault.

A2-52 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D

Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

A2.6 The optional Floating-point extension

The Floating-point (FP) extension is an optional extension to ARMv7-M, described as FPv4-SP. It defines

a Floating Point Unit (FPU) that provides single-precision floating-point instructions. It supports:

. FP extension registers that software can view as either 32 single-precision or 16 doubleword registers

. single-precision floating-point arithmetic

. conversions between integer, single-precision floating-point, and half-precision floating point
formats

. data transfers of single-precision and doubleword registers.

Note

. FPv4-SP is a single-precision only variant of the VFPv4-D16 extension of the ARMv7-A and
ARMV7-R architecture profiles, see the ARM Architecture Reference Manual, ARMv7-A and
ARMv7-R edition.

. In the ARMv7-A and ARMV7-R architecture profiles, floating point instructions are called VFP
instructions and have mnemonics starting with V. Because ARM assembler is highly consistent across
architecture versions and profiles, ARMv7-M retains these mnemonics, but normally describes the
instructions as floating point instructions, or FP instructions.

. Much of the pseudocode describing floating-point operation is common with the ARMv7-A and
ARMvV7-R architecture profiles, and therefore uses VFP to refer to floating-point operations.

The extension supports untrapped handling of floating-point exceptions, such as overflow or division by

zero. When handled in this way, the floating-point exception sets a cumulative status register bit to 1, and

the FP operation returns a defined result. Where appropriate, for example with the inexact and underflow
exceptions, the defined result is a valid result with reduced precision.

For system-level information about the FP extension see:

. F'P extension system register on page B1-685

. Floating-point support on page B1-685.

A2.6.1 The FP extension registers

Software can access the FP extension register bank as:

. thirty-two 32-bit single-precision registers, S0-531

. sixteen 64-bit doubleword registers, D8-D15.

The extension can use the two views simultaneously. Figure A2-1 on page A2-54 shows the relationship

between the two views.

After a reset, the values of the FP extension registers are UNKNOWN.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-53

1D021310

Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

After a save of FP context, the values of registers S0-S15 are unknown, see Context state stacking on
exception entry with the FP extension on page B1-650. Saving the FP context does not save the values of
registers $16-531, and does not affect the values of those registers.

S0-S31 D0-D15

2 1 E——
. B
o E——
= E—
-
| Eap—

Figure A2-1 Alternative views of the FP extension register bank

The FP extension provides single-precision floating point data-processing instructions, that operate on
registers S0-S31. Therefore, this manual describes these registers as the floating point registers. It also
provides data transfer instructions that operate on registers S0-531, or on registers D8-D15.

—— Note
. Registers S0-531 are sometimes described as the single-word registers.
. Registers D0-D15 are sometimes described as the double-precision registers.

Other ARM floating point implementations can support 32 double-precision registers, D0-D31. In the
ARMvV7-M FP extension, and other implementations that support only D8-D15, any instruction that attempts
to access any register in the range D16-D31 is UNDEFINED.

—— Note

Some of the FP pseudocode functions are common to all ARMv7 implementations. Therefore, they can
include cases that cannot occur in the ARMv7-M FP extension.

Pseudocode details of the FP extension registers

The pseudocode function VFPSmal1RegisterBank() returns TRUE if an FP implementation provides access
only to doubleword registers D8-D15. In an ARMv7-M implementation this function always returns TRUE.

The following functions provide the S0-S31 and D0-D15 views of the registers:

A2-54

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

// The 32-bit extension register bank for the FP extension.
array bits(32) _D[0..15];

// S[] - non-assignment form

/!

bits(32) S[integer n]
assert n >= 0 & n <= 31;
if (n MOD 2) == 0 then
result = D[n DIV 2]<31:0>;
else
result = D[n DIV 2]<63:32>;
return result;

// S[] - assignment form
//

S[integer n] = bits(32) value
assert n >= 0 & n <= 31;
if (n MOD 2) == 0 then
D[n DIV 2]<31:0> = value;
else
D[n DIV 2]<63:32> = value;
return;

// D[] - non-assignment form

/!

bits(64) D[integer n]
assert n >= 0 && n <= 31;
if n >= 16 & VFPSmallRegisterBank() then UNDEFINED;
return _D[n];

// D[] - assignment form
//

D[integer n] = bits(64) value
assert n >= 0 & n <= 31;
if n >= 16 & VFPSmallRegisterBank() then UNDEFINED;
_D[n] = value;
return;

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-55
1D021310 Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

A2.6.2 Floating-point Status and Control Register, FPSCR
The FPSCR characteristics are:
Purpose Provides application-level control of the floating-point system.
Usage constraints Accessible only when software has enabled access to CP10 and CP11, see
Coprocessor Access Control Register, CPACR on page B3-735.
Creating a new floating-point context sets the AHP, DN, FZ, and RMode fields of
the FPSCR to the values specified in the FPDSCR, see Floating-Point Default
Status Control Register, FPDSCR on page B3-740. For more information, see
Context state stacking on exception entry with the FP extension on page B1-650.
Configurations Implemented only when an implementation includes the FP extension.
Attributes A 32-bit read/write register, accessible by unprivileged and privileged software. The
FPSCR reset value is UNKNOWN.
Figure A2-2 shows the FPSCR bit assignments.
31 30 29 28 27 26 25 24 23 22 21 876 543210
N[Z[C|V Reserved
Reserved -/ L RMode Ipc ! L-ioc
AHP Fz Reserved DzC
DN IXC OFC
UFC
Figure A2-2 FPSCR bit assignments
Table A2-1 shows the FPSCR bit assignments.
Table A2-1 FPSCR bit assignments
Bits Name Function
[31] N Condition code flags. Floating-point comparison operations update these flags.
[30] 7 N Negative c'o'ndition code flag.
V4 Zero condition code flag.
[29] C C Carry condition code flag.
[28] v v Overflow condition code flag.
[27] - Reserved.
A2-56 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D

Non-Confidential, Unrestricted Access

1D021310

Application Level Programmers’ Model

Table A2-1 FPSCR bit assignments (continued)

Bits Name Function
[26] AHP Alternative half-precision control bit:
0 IEEE 754-2008 half-precision format selected.
1 Alternative half-precision format selected.
For more information see Floating-point half-precision formats on page A2-60.
[25] DN Default NaN mode control bit:
0 NaN operands propagate through to the output of a floating-point operation.
1 Any operation involving one or more NaNs returns the Default NaN.
For more information, see NaN handling and the Default NaN on page A2-63.
[24] FZ Flush-to-zero mode control bit:
0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully
compliant with the IEEE 754 standard.
1 Flush-to-zero mode enabled.
For more information, see Flush-to-zero on page A2-62.
[23:22] RMode Rounding Mode control field. The encoding of this field is:
0b00 Round to Nearest (RN) mode
0b01 Round towards Plus Infinity (RP) mode
0b10 Round towards Minus Infinity (RM) mode
Ob11 Round towards Zero (RZ) mode.
The specified rounding mode is used by almost all floating-point instructions.
[21:8] - Reserved.
[7] IDC Input Denormal cumulative exception bit, see bits [4:0].
[6:5] - Reserved.
[4] IXC Cumulative exception bits for floating-point exceptions, see also bit [7]. Each of these bits is
set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.
[3] UFC For more information about the exceptions indicated by these bits see Floating-point
exceptions on page A2-64.
2] OFC IDC, bit[7] Input Denormal cumulative exception bit.
IXC Inexact cumulative exception bit.
] DZC UFC Underflow cumulative exception bit.
[OFC Overflow cumulative exception bit.
DZC Division by Zero cumulative exception bit.
[0] 16€ 10C Invalid Operation cumulative exception bit.
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-57

1D021310

Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

A2.6.3

Writes to the FPSCR can have side-effects on various aspects of processor operation. All of these
side-effects are synchronous to the FPSCR write. This means they are guaranteed not to be visible to earlier
instructions in the execution stream, and they are guaranteed to be visible to later instructions in the
execution stream.

Accessing the FPSCR

You read or write the FPSCR, or transfer the FPSCR flags to the corresponding APSR flags, using the VMRS
and VMSR instructions. For more information, see VMRS on page A7-592 and VMSR on page A7-593. For
example:

VMRS <Rt>, FPSCR ; Read Floating-point System Control Register
VMSR FPSCR, <Rt> ; Write Floating-point System Control Register
Floating-point data types and arithmetic

The FP extension supports single-precision (32-bit) floating-point data types and arithmetic as defined by
the IEEE 754 floating-point standard. It also supports the ARM standard modifications to that arithmetic
described in Flush-to-zero on page A2-62 and NaN handling and the Default NaN on page A2-63.

ARM standard floating-point arithmetic means IEEE 754 floating-point arithmetic with the ARM standard
modifications and the Round to Nearest rounding mode selected.
ARM standard floating-point input and output values

ARM standard floating-point arithmetic supports the following input formats defined by the IEEE 754
floating-point standard:

. Zeros.
. Normalized numbers.

. Denormalized numbers are flushed to 0 before floating-point operations. For more information see
Flush-to-zero on page A2-62.

. NaNs.
. Infinities.

ARM standard floating-point arithmetic supports the Round to Nearest rounding mode defined by the
IEEE 754 standard.

ARM standard floating-point arithmetic supports the following output result formats defined by the
IEEE 754 standard:

. Zeros.

. Normalized numbers.

A2-58

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

. Results that are less than the minimum normalized number are flushed to zero, see Flush-to-zero on
page A2-62.

. NaNs produced in floating-point operations are always the default NaN, see NaN handling and the
Default NaN on page A2-63.

. Infinities.

Floating-point single-precision format

The single-precision floating-point format used by the FP extension is as defined by the IEEE 754 standard.

This description includes ARM-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of
infinities, NaNs and signed zeros, see the IEEE 754 standard.

A single-precision value is a 32-bit word, and must be word-aligned when held in memory. It has the format:

3130

23 22 0

S

exponent

fraction

The interpretation of the format depends on the value of the exponent field, bits[30:23]:

0 < exponent < OxFF

exponent ==

The value is a normalized number and is equal to:
—18 x 2(exponent —127) x (] fraction)
The minimum positive normalized number is 2-126, or approximately 1.175 x10-38,

The maximum positive normalized number is (2 — 2-23) x 2127, or approximately

3.403 x1038.

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction ==

The value is a zero. There are two distinct zeros:

+0 when S==0

-0 when S==1.

These usually behave identically. In particular, the result is equal if +0 and —0
are compared as floating-point numbers. However, they yield different results
in some circumstances. For example, the sign of the infinity produced as the
result of dividing by zero depends on the sign of the zero. The two zeros can be
distinguished from each other by performing an integer comparison of the two
words.

fraction != 0

The value is a denormalized number and is equal to:

ARM DDI 0403D
1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-59

Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

—18 x 2-126 x (0.fraction)
The minimum positive denormalized number is 2-149, or approximately 1.401 x 10-45.

Denormalized numbers are optionally flushed to zero in the FP extension. For details see
Flush-to-zero on page A2-62.

exponent == OxFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction ==

The value is an infinity. There are two distinct infinities:

+o0 When S==0. This represents all positive numbers that are too big to
be represented accurately as a normalized number.

-0 When S==1. This represents all negative numbers with an absolute
value that is too big to be represented accurately as a normalized
number.

fraction !=0

The value is a NaN, and is either a quiet NaN or a signaling NaN.
In the FP architecture, the two types of NaN are distinguished on the basis of
their most significant fraction bit, bit[22]:
bit[22] ==
The NaN is a signaling NaN. The sign bit can take any value, and
the remaining fraction bits can take any value except all zeros.
bit[22] ==
The NaN is a quiet NaN. The sign bit and remaining fraction bits
can take any value.

For details of the default NaN see NaN handling and the Default NaN on page A2-63.

—— Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean you can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN
compares as unordered with everything, including itself. However, you can use integer comparisons to
distinguish different NaNs.

Floating-point half-precision formats

The ARM half-precision floating-point implementation uses two half-precision floating-point formats:
. IEEE half-precision, as described in the IEEE 754-2008 standard
. Alternative half-precision.

A2-60

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

The description of IEEE half-precision includes ARM-specific details that are left open by the standard, and
is only an introduction to the formats and to the values they can contain. For more information, especially
on the handling of infinities, NaNs and signed zeros, see the IEEE 754-2008 standard.

For both half-precision floating-point formats, the layout of the 16-bit number is the same. The format is:

1514 10 9 0

S exponent fraction

The interpretation of the format depends on the value of the exponent field, bits[14:10] and on which
half-precision format is being used.
0 < exponent < Ox1F
The value is a normalized number and is equal to:
—18 x 2((exponent-15) x (1.fraction)
The minimum positive normalized number is 2-14, or approximately 6.104 x10-5.
The maximum positive normalized number is (2 — 2-10) x 215, or 65504.
Larger normalized numbers can be expressed using the alternative format when the
exponent == Ox1F.
exponent ==
The value is either a zero or a denormalized number, depending on the fraction bits:
fraction ==
The value is a zero. There are two distinct zeros:
+0 when S==0
-0 when S==1.
fraction !=0
The value is a denormalized number and is equal to:
—18 x 2-14 x (0.fraction)

The minimum positive denormalized number is 224, or approximately 5.960 x 108,

exponent == 0x1F
The value depends on which half-precision format is being used:

IEEE Half-precision

The value is either an infinity or a Not a Number (NaN), depending on the
fraction bits:

fraction ==
The value is an infinity. There are two distinct infinities:
+infinity When S==0. This represents all positive
numbers that are too big to be represented
accurately as a normalized number.
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-61

1D021310 Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

-infinity When S==1. This represents all negative
numbers with an absolute value that is too
big to be represented accurately as a
normalized number.
fraction !=0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant

fraction bit, bit[9]:

bit[9] == The NaN is a signaling NaN. The sign bit
can take any value, and the remaining
fraction bits can take any value except all
ZEeros.

bit[9] == The NaN is a quiet NaN. The sign bit and
remaining fraction bits can take any value.

Alternative Half-precision
The value is a normalized number and is equal to:
-18 x 216 x (1.fraction)

The maximum positive normalized number is (2-2-10) x 216 or 131008.

Flush-to-zero

Behavior in Flush-to-zero mode differs from normal IEEE 754 arithmetic in the following ways:

All inputs to floating-point operations that are single-precision de-normalized numbers are treated as
though they were zero. This causes an Input Denormal exception, but does not cause an Inexact
exception. The Input Denormal exception occurs only in Flush-to-zero mode.

The FPSCR contains a cumulative exception bit FPSCR.IDC corresponding to the Input Denormal
exception. For more information see Floating-point Status and Control Register, FPSCR on
page A2-56.

The occurrence of all exceptions except Input Denormal is determined using the input values after
flush-to-zero processing has occurred.

The result of a floating-point operation is flushed to zero if the result of the operation before rounding
satisfies the condition:

0 < Abs(result) < MinNorm, where MinNorm is 2-126 for single-precision arithmetic.

This causes the FPSCR.UFC bit to be set to 1, and prevents any Inexact exception from occurring for
the operation.

Underflow exceptions occur only when a result is flushed to zero.
An Inexact exception does not occur if the result is flushed to zero, even though the final result of

zero is not equivalent to the value that would be produced if the operation were performed with
unbounded precision and exponent range.

For information on the FPSCR bits see Floating-point Status and Control Register, FPSCR on page A2-56.

A2-62

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

When an input or a result is flushed to zero the value of the sign bit of the zero is preserved. That is, the sign
bit of the zero matches the sign bit of the input or result that is being flushed to zero.

Flush-to-zero mode has no effect on half-precision numbers that are inputs to floating-point operations, or
results from floating-point operations.

Note

Flush-to-zero mode is incompatible with the IEEE 754 standard, and must not be used when IEEE 754
compatibility is a requirement. Flush-to-zero mode must be treated with care. Although it can lead to a major
performance increase on many algorithms, there are significant limitations on its use. These are application
dependent:

. On many algorithms, it has no noticeable effect, because the algorithm does not normally use
denormalized numbers.

. On other algorithms, it can cause exceptions to occur or seriously reduce the accuracy of the results
of the algorithm.

NaN handling and the Default NaN

The IEEE 754 standard specifies that:

. an operation that produces an Invalid Operation floating-point exception generates a quiet NaN as its
result
. an operation involving a quiet NaN operand, but not a signaling NaN operand, returns an input NaN

as its result.

The FP behavior when Default NaN mode is disabled adheres to this with the following extra details, where
the first operand means the first argument to the pseudocode function call that describes the operation:

. If an Invalid Operation floating-point exception is produced because one of the operands is a
signaling NaN, the quiet NaN result is equal to the signaling NaN with its most significant fraction
bit changed to 1. If both operands are signaling NaNss, the result is produced in this way from the first

operand.

. If an Invalid Operation floating-point exception is produced for other reasons, the quiet NaN result
is the Default NaN.

. If both operands are quiet NaNs, the result is the first operand.

The FP behavior when Default NaN mode is enabled is that the Default NaN is the result of all floating-point
operations that:

. generate Invalid Operation floating-point exceptions

. have one or more quiet NaN inputs.

Table A2-2 on page A2-64 shows the format of the default NaN for ARM floating-point processors.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-63

1D021310

Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

Default NaN mode is selected for FP by setting the FPSCR.DN bit to 1, see Floating-point Status and
Control Register, FPSCR on page A2-56.

The Invalid Operation exception causes the FPSCR.IOC bit be set to 1. This is not affected by Default NaN
mode.

Table A2-2 Default NaN encoding

Half-precision, IEEE Format Single-precision

Sign bit 0 0
Exponent Ox1F OxFF
Fraction Bit[9] == 1, bits[8:0] == bit[22] == 1, bits[21:0] ==

Floating-point exceptions

The FP extension records the following floating-point exceptions in the FPSCR cumulative bits, see
Floating-point Status and Control Register, FPSCR on page A2-56:

10C Invalid Operation. The bit is set to 1 if the result of an operation has no mathematical value
or cannot be represented. Cases include infinity * 0, +infinity + (—infinity), for example.
These tests are made after flush-to-zero processing. For example, if flush-to-zero mode is
selected, multiplying a denormalized number and an infinity is treated as 0 * infinity and
causes an Invalid Operation floating-point exception.

I0C is also set on any floating-point operation with one or more signaling NaNs as
operands, except for negation and absolute value, as described in F'P negation and absolute
value on page A2-68.

DZC Division by Zero. The bit is set to 1 if a divide operation has a zero divisor and a dividend
that is not zero, an infinity or a NaN. These tests are made after flush-to-zero processing, so
if flush-to-zero processing is selected, a denormalized dividend is treated as zero and
prevents Division by Zero from occurring, and a denormalized divisor is treated as zero and
causes Division by Zero to occur if the dividend is a normalized number.

For the reciprocal and reciprocal square root estimate functions the dividend is assumed to
be +1.0. This means that a zero or denormalized operand to these functions sets the DZC bit.

OFC Overflow. The bit is set to 1 if the absolute value of the result of an operation, produced after
rounding, is greater than the maximum positive normalized number for the destination
precision.

UFC Underflow. The bit is set to 1 if the absolute value of the result of an operation, produced

before rounding, is less than the minimum positive normalized number for the destination
precision, and the rounded result is inexact.

The criteria for the Underflow exception to occur are different in Flush-to-zero mode. For
details, see Flush-to-zero on page A2-62.

A2-64 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

IXC

IDC

Application Level Programmers’ Model

Inexact. The bit is set to 1 if the result of an operation is not equivalent to the value that
would be produced if the operation were performed with unbounded precision and exponent
range.

The criteria for the Inexact exception to occur are different in Flush-to-zero mode. For
details, see Flush-to-zero on page A2-62.

Input Denormal. The bit is set to 1 if a denormalized input operand is replaced in the
computation by a zero, as described in Flush-to-zero on page A2-62.

Table A2-3 shows the default results of the floating-point exceptions:

Table A2-3 Floating-point exception default results

Exception type Default result for positive sign Default result for negative sign

10C, Invalid Operation ~ Quiet NaN Quiet NaN

DZC, Division by Zero + (plus infinity) - (minus infinity)

OFC, Overflow RN, RP: +oo (plus infinity) RN, RM: -0 (minus infinity)
RM, RZ: +MaxNorm RP, RZ: —MaxNorm

UFC, Underflow Normal rounded result Normal rounded result

IXC, Inexact Normal rounded result Normal rounded result

IDC, Input Denormal Normal rounded result Normal rounded result

In Table A2-3:

MaxNorm The maximum normalized number of the destination precision

RM Round towards Minus Infinity mode, as defined in the IEEE 754 standard

RN Round to Nearest mode, as defined in the IEEE 754 standard

RP Round towards Plus Infinity mode, as defined in the IEEE 754 standard

RZ Round towards Zero mode, as defined in the IEEE 754 standard

. For Invalid Operation exceptions, for details of which quiet NaN is produced as the default result see

NaN handling and the Default NaN on page A2-63.

. For Division by Zero exceptions, the sign bit of the default result is determined normally for a
division. This means it is the exclusive OR of the sign bits of the two operands.

. For Overflow exceptions, the sign bit of the default result is determined normally for the overflowing
operation.

ARM DDI 0403D
1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-65
Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

Combinations of exceptions
The following pseudocode functions perform floating-point operations:

FixedToFP()
FPAbs()

FPAdd()
FPCompare()
FPDiv()
FPHalfToSingle()
FPMul()
FPMulAdd()
FPNeg()
FPSingleToHalf()
FPSqrt()

FPSub()
FPToFixed()

All of these operations except FPAbs() and FPNeg() can generate floating-point exceptions.

More than one exception can occur on the same operation. The only combinations of exceptions that can

occur are:
. Overflow with Inexact

. Underflow with Inexact

. Input Denormal with other exceptions.

Any exception that occurs causes the associated cumulative bit in the FPSCR to be set.

Some floating-point instructions specify more than one floating-point operation, as indicated by the
pseudocode descriptions of the instruction. In such cases, an exception on one operation is treated as higher
priority than an exception on another operation if the occurrence of the second exception depends on the
result of the first operation. Otherwise, it is UNPREDICTABLE which exception is treated as higher priority.

For example, a VMLA instruction specifies a floating-point multiplication followed by a floating-point
addition. The addition can generate Overflow, Underflow and Inexact exceptions, all of which depend on
both operands to the addition and so are treated as lower priority than any exception on the multiplication.
The same applies to Invalid Operation exceptions on the addition caused by adding opposite-signed
infinities.

The addition can also generate an Input Denormal exception, caused by the addend being a denormalized
number while in Flush-to-zero mode. It is UNPREDICTABLE which of an Input Denormal exception on the

addition and an exception on the multiplication is treated as higher priority, because the occurrence of the
Input Denormal exception does not depend on the result of the multiplication. The same applies to an Invalid
Operation exception on the addition caused by the addend being a signaling NaN.

A2-66 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

Pseudocode details of floating-point operations

This section contains pseudocode definitions of the floating-point operations used by the FP extension.

Generation of specific floating-point values

The following functions generate specific floating-point values. The sign argument of FPZero(),
FPMaxNormal(), and FPInfinity() is '@" for the positive version and '1' for the negative version.

// FPZero()
/] =mmmm==

bits(N) FPZero(bit sign, integer N)
assert N IN {16,32};
if N == 16 then
return sign : ‘00000 0000000000 ;
else
return sign : ° 00 '

// FPInfinity()
/] ===========

bits(N) FPInfinity(bit sign, integer N)
assert N IN {16,32};

if N == 16 then
return sign : ‘11111 0000000000’ ;
else
return sign : ‘11111111 00 ’;

// FPMaxNormal()
/] ==m=smmsmeee-

bits(N) FPMaxNormal(bit sign, integer N)
assert N IN {16,32};
if N == 16 then
return sign : ‘11110 1111111111°;
else
return sign : ‘11111110 11111111111111111111111°;

// FPDefaultNaN()
/A

bits(N) FPDefaultNaN(integer N)
assert N IN {16,32};

if N == 16 then
return ‘0 11111 1000000000’ ;
else
return ‘0 11111111 1 00 000’ ;
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-67

1D021310 Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

FP negation and absolute value

The floating-point negation and absolute value operations only affect the sign bit. They do not apply any
special treatment:

. to NaN operands

. when flush-to-zero is selected, to denormalized number operands.
// FPNeg()
/] =======

bits(N) FPNeg(bits(N) operand)
assert N IN {32,64};
return NOT(operand<N-1>) : operand<N-2:0>;

// FPAbs()
[

bits(N) FPAbs(bits(N) operand)
assert N IN {32,64};
return ‘0’ : operand<N-2:0>;

FP value unpacking

The FPUnpack() function determines the type and numerical value of a floating-point number. It also does
flush-to-zero processing on input operands.

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity, FPType_QNaN, FPType_SNaN};

// FPUnpack()

/] ==========

//

// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)

//

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(FPType, bit, real) FPUnpack(bits(N) fpval, bits(32) fpscr_val)
assert N IN {16,32};

if N == 16 then
sign = fpval<15>;
exp = fpval<14:10>;
frac = fpval<9:0>;
if IsZero(exp) then
// Produce zero if value is zero
if IsZero(frac) then
type = FPType_Zero; value = 0.0;
else
type = FPType_Nonzero; value = 2A-14 « (UInt(frac) = 2A-10);

A2-68

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

elsif IsOnes(exp) && fpscr_val<26> == ‘0’ then // Infinity or NaN in IEEE format
if IsZero(frac) then
type = FPType_Infinity; value = 2A1000000;
else
type = if frac<9> == ‘1’ then FPType_QNaN else FPType_SNaN;
value = 0.0;
else
type = FPType_Nonzero; value = 2A(UInt(exp)-15) * (1.0 + UInt(frac) = 2A-10));

else // N == 32

sign = fpval<3l>;
exp = fpval<30:23>;
frac = fpval<22:0>;
if IsZero(exp) then
// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac) || fpscr_val<24> == ‘1’ then
type = FPType_Zero; value = 0.0;
if 1IsZero(frac) then // Denormalized input flushed to zero
FPProcessException(FPExc_InputDenorm, fpscr_val);
else
type = FPType_Nonzero; value = 2A-126 * (UInt(frac) = 2A-23);
elsif IsOnes(exp) then
if IsZero(frac) then
type = FPType_Infinity; value = 2A1000000;

else
type = if frac<22> == ‘1’ then FPType_QNaN else FPType_SNaN;
value = 0.0;
else
type = FPType_Nonzero; value = 2A(UInt(exp)-127) = (1.0 + UInt(frac) = 2A-23));
if sign == ‘1’ then value = -value;

return (type, sign, value);

FP exception and NaN handling

The FPProcessException() procedure checks whether a floating-point exception is trapped, and handles it
accordingly:

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity, FPType_QNaN, FPType_SNaN};

// FPProcessException()
/!
//
// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

FPProcessException(FPExc exception, bits(32) fpscr_val)
// Get appropriate FPSCR bit numbers
case exception of

when FPExc_InvalidOp enable = 8; cumul = 0;
when FPExc_DivideByZero enable = 9; cumul = 1;
when FPExc_Overflow enable = 10; cumul = 2;
when FPExc_Underflow enable = 11; cumul = 3;
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-69

1D021310 Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

[}
S

when FPExc_Inexact enable = 12; cumul
when FPExc_InputDenorm enable = 15; cumul = 7;
if fpscr_val<enable> then
IMPLEMENTATION_DEFINED floating-point trap handling;
else
FPSCR<cumul> = ‘1’;
return;

The FPProcessNaN() function processes a NaN operand, producing the correct result value and generating an
Invalid Operation exception if necessary:

// FPProcessNaN()

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPProcessNaN(FPType type, bits(N) operand, bits(32) fpscr_val)
assert N IN {32,64};
topfrac = if N == 32 then 22 else 51;
result = operand;
if type = FPType_SNaN then
result<topfrac> = ‘1’;
FPProcessException(FPExc_InvalidOp, fpscr_val);
if fpscr_val<25> == ‘1’ then // DefaultNaN requested
result = FPDefaultNaN(N);
return result;

The FPProcessNaNs() function performs the standard NaN processing for a two-operand operation:

// FPProcessNaNs()

/| ===============

//

// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the

// result of the operation.

//

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(booTean, bits(N)) FPProcessNaNs(FPType typel, FPType type2,
bits(N) opl, bits(N) op2,
bits(32) fpscr_val)
assert N IN {32,64};
if typel == FPType_SNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
elsif typel == FPType_QNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
else
done = FALSE; result = Zeros(N); // ‘Don’t care’ result

A2-70

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

return (done, result);
The FPProcessNaNs3() function performs the standard NaN processing for a three-operand operation:

// FPProcessNaNs3()

/] s==============

/!

// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the

// result of the operation.

/!

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(booTean, bits(N)) FPProcessNaNs3(FPType typel, FPType type2, FPType type3,
bits(N) opl, bits(N) op2, bits(N) op3,
bits(32) fpscr_val)

assert N IN {32,64};
if typel == FPType_SNaN then

done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
elsif type3 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val);
elsif typel == FPType_QNaN then

done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
elsif type3 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val);
else

done = FALSE; result = Zeros(N); // ‘Don’t care’ result
return (done, result);

FP rounding

The FPRound() function rounds and encodes a floating-point result value to a specified destination format.
This includes processing Overflow, Underflow and Inexact floating-point exceptions and performing
flush-to-zero processing on result values.

// FPRound()

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPRound(real result, integer N, bits(32) fpscr_val)
assert N IN {16,32};
assert result != 0.0;

// Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
if N == 16 then

minimum_exp = -14; E =5; F = 10;
else // N == 32

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-71
1D021310 Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

minimum_exp = -126; E = 8; F = 23;

// Split value into sign, unrounded mantissa and exponent.
if result < 0.0 then

sign = ‘1’; mantissa = -result;
else

sign = ‘@’; mantissa = result;
exponent = 0;
while mantissa < 1.0 do

mantissa = mantissa x 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do

mantissa = mantissa / 2.0; exponent = exponent + 1;

// Deal with flush-to-zero.
if fpscr_val<24> == ‘1’ & N != 16 && exponent < minimum_exp then

result = FPZero(sign, N);

FPSCR.UFC = ‘1’; // Flush-to-zero never generates a trapped exception
else

// Start creating the exponent value for the result. Start by biasing the actual exponent
// so that the minimum exponent becomes 1, Tower values @ (indicating possible underflow).
biased_exp = Max(exponent - minimum_exp + 1, 0);

if biased_exp == @ then mantissa = mantissa / 2A(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the “units in last place” rounding error.
int_mant = RoundDown(mantissa « 2AF); // < 2AF if biased_exp == 0, >= 2AF if not
error = mantissa * 2AF - int_mant;

// Underflow occurs if exponent is too small before rounding, and result is inexact or

// the Underflow exception is trapped.

if biased_exp == 0 & (error != 0.0 || fpscr_val<ll> == ‘1’) then
FPProcessException(FPExc_Underflow, fpscr_val);

// Round result according to rounding mode.
case fpscr_val<23:22> of
when ‘00’ // Round to Nearest (rounding to even if exactly halfway)
round_up = (error > 0.5 || (error == 0.5 &% int_mant<0> == ‘1’));
overflow_to_inf = TRUE;
when ‘01’ // Round towards Plus Infinity
round_up = (error != 0.0 & sign == ‘0’);
overflow_to_inf = (sign == ‘0’);
when ‘10’ // Round towards Minus Infinity
round_up = (error != 0.0 && sign == ‘1’);
overflow_to_inf = (sign == ‘1’);
when ‘11’ // Round towards Zero
round_up = FALSE;
overflow_to_inf = FALSE;
if round_up then
int_mant = int_mant + 1;
if int_mant == 2AF then // Rounded up from denormalized to normalized
biased_exp = 1;
if int_mant == 2A(F+1) then // Rounded up to next exponent
biased_exp = biased_exp + 1; int_mant = int_mant DIV 2;

A2-72 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

// Deal with overflow and generate result.
if N I= 16 || fpscr_val<26> == ‘0’ then // Single, double or IEEE half precision
if biased_exp >= 2AE - 1 then
result = if overflow_to_inf then FPInfinity(sign, N) else FPMaxNormal(sign, N);
FPProcessException(FPExc_Overflow, fpscr_val);
error = 1.0; // Ensure that an Inexact exception occurs
else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;
else // Alternative half precision
if biased_exp >= 2AE then
result = sign : Ones(15);
FPProcessException(FPExc_InvalidOp, fpscr_val);
error = 0.0; // Ensure that an Inexact exception does not occur
else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0>;

// Deal with Inexact exception.
if error != 0.0 then
FPProcessException(FPExc_Inexact, fpscr_val);

return result;

Selection of ARM standard floating-point arithmetic

The function StandardFPSCRValue() returns an FPSCR value that selects ARM standard floating-point
arithmetic. Most FP arithmetic functions have a boolean argument fpscr_controlled that selects between
using the real FPSCR value and this value.

// StandardFPSCRValue()
//

bits(32) StandardFPSCRValue()
return ‘00000’ : FPSCR<26> : ‘1100000 00’;

FP comparisons

The FPCompare() function compares two floating-point numbers, producing an (N,Z,C,V) flags result as
Table A2-4 shows:

Table A2-4 FP comparison flag values

Comparisonresult N Z C V

Equal 0 1 1 0
Less than 1 0 0 0
Greater than 0 0 1 0
Unordered 0 0 1 1
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-73

Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

In the FP extension, this result defines the VCMP instruction. The VCMP instruction writes these flag values in
the FPSCR. Software can use a VMRS instruction to transfer them to the APSR, and they then control

conditional execution as Table A7-1 on page A7-208 shows.

// FPCompare()
[/ sm=mmmmm==s

(bit, bit, bit, bit) FPCompare(bits(N) opl, bits(N) op2, boolean quiet_nan_exc,

boolean fpscr_controlled)
assert N IN {32,64};

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then

result = (‘0’,’0’,’1",’1’);

if typel==FPType_SNaN || type2==FPType_SNaN || quiet_nan_exc then

FPProcessException(FPExc_InvalidOp, fpscr_val);
else

// A11 non-NaN cases can be evaluated on the values produced by FPUnpack()

if valuel == value2 then
result = (‘0’,’1",’1",’0’);
elsif valuel < value2 then
result = (‘1’,70°,’0",°0’);
else // valuel > value2
result = (‘0’,’0",’1",’0’);
return result;

FP addition and subtraction

The following functions perform floating-point addition and subtraction.

// FPAdd()
/] =======

bits(N) FPAdd(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);

if !done then

infl = (typel == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);

if infl && inf2 && signl == NOT(sign2) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);

elsif (infl && signl == ‘Q’) || (inf2 && sign2 == ‘Q’) then

result = FPInfinity(‘0’, N);

elsif (infl && signl == ‘1’) || (inf2 && sign2 == ‘1’) then

result = FPInfinity(‘1l’, N);

elsif zerol && zero2 && signl == sign2 then
result = FPZero(signl, N);

else
result_value = valuel + value2;

A2-74

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved.

Non-Confidential, Unrestricted Access

ARM DDI 0403D
1D021310

Application Level Programmers’ Model

if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0’;
result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);
return result;

// FPSub()
J/—

bits(N) FPSub(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if infl && inf2 && signl == sign2 then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif (infl && signl == ‘0’) || (inf2 && sign2 == ‘1’) then
result = FPInfinity(‘Q’, N);
elsif (infl && signl == ‘1’) || (inf2 && sign2 == ‘@’) then
result = FPInfinity(‘1l’, N);
elsif zerol & zero2 && signl == NOT(sign2) then
result = FPZero(signl, N);
else
result_value = valuel - value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0’;
result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);
return result;

FP multiplication and division

The following functions perform floating-point multiplication and division.

// FPMul()
/] ====mms

bits(N) FPMul(bits(N) opl, bits(N) op2, boolean fpscr_controlled)

assert N IN {32,64};

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);

if !done then
infl = (typel == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-75
1D021310 Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif infl || inf2 then
result_sign = if signl == sign2 then ‘0’ else ‘1’;
result = FPInfinity(result_sign, N);
elsif zerol || zero2 then
result_sign = if signl == sign2 then ‘@’ else ‘1’;
result = FPZero(result_sign, N);
else
result = FPRound(valuelxvalue2, N, fpscr_val);
return result;

// FPDiv()
J/—

bits(N) FPDiv(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && inf2) || (zerol && zero2) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif infl || zero2 then
result_sign = if signl == sign2 then ‘0’ else ‘1’;
result = FPInfinity(result_sign, N);
if 1infl then FPProcessException(FPExc_DivideByZero);
elsif zerol || inf2 then
result_sign = if signl == sign2 then ‘@’ else ‘1’;
result = FPZero(result_sign, N);
else
result = FPRound(valuel/value2, N, fpscr_val);
return result;

FP multiply accumulate

The FPMu1Add() function performs the calculation A*B+C with only a single rounding step, and so provides
greater accuracy than performing the multiplication followed by an add:

// FPMulAdd()

/] ==mmmmm===

//

// Calculates addend + oplxop2 with a single rounding.

bits(N) FPMulAdd(bits(N) addend, bits(N) opl, bits(N) op2,
boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typeA,signA,valueA) = FPUnpack(addend, fpscr_val);
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

A2-76 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Application Level Programmers’ Model

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
infl = (typel == FPType_Infinity); zerol = (typel == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

(done,result) = FPProcessNaNs3(typeA, typel, type2, opA, opl, op2, fpscr_val);

if typeA == FPType_QNaN && ((infl && zero2) || (zerol && inf2)) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);

if !done then

infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

// Determine sign and type product will have if it does not cause an Invalid

// Operation.

signP = if signl == sign2 then ‘0’ else ‘1’;
infP = infl || inf2;

zeroP = zerol || zero2;

// Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and

// additions of opposite-signed infinities.

if (infl && zero2) || (zerol && inf2) || (infA & infP && signA == NOT(signP)) then

result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);

// Other cases involving infinities produce an infinity of the same sign.

elsif (infA && signA == ‘0’) || (infP && signP == ‘0’) then
result = FPInfinity(‘Q’, N);

elsif (infA && signA == ‘1’) || (infP && signP == ‘1’) then
result = FPInfinity(‘1l’, N);

// Cases where the result is exactly zero and its sign is not determined by the

// rounding mode are additions of same-signed zeros.
elsif zeroA & zeroP & signA == signP then
result = FPZero(signA, N);

// Otherwise calculate numerical result and round it.
else

if result_value == 0.0 then // Sign of exact zero result depends on rounding

// mode

result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0’;

result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);

return result;

FP square root
The FPSqrt() function performs a floating-point square root calculation:

// FPSqrt()
/] e

bits(N) FPSqrt(bits(N) operand, boolean fpscr_controlled)

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved.
1D021310 Non-Confidential, Unrestricted Access

A2-77

Application Level Programmers’ Model

assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
result = FPProcessNaN(type, operand, fpscr_val);

elsif type == FPType_Zero || (type = FPType_Infinity & sign == ‘@’) then

result = operand;
elsif sign == ‘1’ then

result = FPDefauTtNaN(N);

FPProcessException(FPExc_InvalidOp, fpscr_val);
else

result = FPRound(Sqrt(value), N, fpscr_val);
return result;

FP conversions

The following functions perform conversions between half-precision and single-precision floating-point

numbers.

// FPHalfToSingle()
/[================

bits(32) FPHalfToSingle(bits(16) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(32);
else
result = sign : ‘11111111 1’ : operand<8:0> : Zeros(13)
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type = FPType_Infinity then
result = FPInfinity(sign, 32);
elsif type = FPType_Zero then
result = FPZero(sign, 32);
else
result = FPRound(value, 32, fpscr_val); // Rounding will be exact
return result;

// FPSingleToHalf()
/] ======mm========

bits(16) FPSingleToHalf(bits(32) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<26> == ‘1’ then // AH bit set
result = FPZero(sign, 16);
elsif fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(16);
else
result = sign : ‘11111 1’ : operand<21:13>;
if type == FPType_SNaN || fpscr_val<26> == ‘1’ then

A2-78 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

ARM DDI 0403D
1D021310

Application Level Programmers’ Model

FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type = FPType_Infinity then
if fpscr_val<26> == ‘1’ then // AH bit set
result = sign : Ones(15);
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
result = FPInfinity(sign, 16);
elsif type = FPType_Zero then
result = FPZero(sign, 16);
else
result = FPRound(value, 16, fpscr_val);
return result;

The following functions perform conversions between floating-point numbers and integers or fixed-point
numbers:

// FPToFixed()

bits(M) FPToFixed(bits(N) operand, integer M, integer fraction_bits, boolean unsigned,
boolean round_towards_zero, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
if round_towards_zero then fpscr_val<23:22> = ‘11’;
(type,sign,value) = FPUnpack(operand, fpscr_val);

// For NaNs and infinities, FPUnpack() has produced a value that will round to the
// required result of the conversion. Also, the value produced for infinities will
// cause the conversion to overflow and signal an Invalid Operation floating-point
// exception as required. NaNs must also generate such a floating-point exception.
if type == FPType_SNaN || type == FPType_QNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);

// Scale value by specified number of fraction bits, then start rounding to an integer
// and determine the rounding error.

value = value = 2Afraction_bits;

int_result = RoundDown(value);

error = value - int_result;

// Apply the specified rounding mode.
case fpscr_val<23:22> of
when ‘00’ // Round to Nearest (rounding to even if exactly halfway)
round_up = (error > 0.5 || (error == 0.5 && int_result<0> == ‘1’));
when ‘01’ // Round towards PTus Infinity
round_up = (error != 0.0);
when ‘10’ // Round towards Minus Infinity
round_up = FALSE;
when ‘11" // Round towards Zero
round_up = (error != 0.0 & int_result < 0);
if round_up then int_result = int_result + 1;

// Bitstring result is the integer result saturated to the destination size, with
// saturation indicating overflow of the conversion (signaled as an Invalid
// Operation floating-point exception).

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A2-79
1D021310 Non-Confidential, Unrestricted Access

Application Level Programmers’ Model

(result, overflow) = SatQ(int_result, M, unsigned);

if overflow then
FPProcessException(FPExc_InvalidOp, fpscr_val);

elsif error != 0 then
FPProcessException(FPExc_Inexact, fpscr_val);

return result;

// FixedToFP()

bits(N) FixedToFP(bits(M) operand, integer N, integer fraction_bits, boolean unsigned,
boolean round_to_nearest, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
if round_to_nearest then fpscr_val<23:22> = ‘00’;
int_operand = if unsigned then UInt(operand) else SInt(operand);
real_operand = int_operand / 2Afraction_bits;
if real_operand == 0.0 then
result = FPZero(‘0’, N);
else
result = FPRound(real_operand, N, fpscr_val);
return result;

A2-80 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Chapter A3
ARM Architecture Memory Model

This chapter gives an application-level view of the ARMv7-M memory model. It contains the following
sections:

Address space on page A3-82

Alignment support on page A3-83

Endian support on page A3-85

Synchronization and semaphores on page A3-89

Memory types and attributes and the memory order model on page A3-99
Access rights on page A3-109

Memory access order on page A3-111

Caches and memory hierarchy on page A3-120

ARM DDI 0403D

1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-81
Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

A3.1

Address space

ARMvV7-M is a memory-mapped architecture. The system address map on page B3-704 describes the
ARMv7-M address map.

The ARMv7-M architecture uses a single, flat address space of 232 8-bit bytes. Byte addresses are treated
as unsigned numbers, running from 0 to 232 - 1.

This address space is regarded as consisting of 230 32-bit words, each of whose addresses is word-aligned,
meaning that the address is divisible by 4. The word whose word-aligned address is A consists of the four
bytes with addresses A, A+1, A+2 and A+3. The address space can also be considered as consisting of 231
16-bit halfwords, each of whose addresses is halfword-aligned, meaning that the address is divisible by 2.
The halfword whose halfword-aligned address is A consists of the two bytes with addresses A and A+1.

While instruction fetches are always halfword-aligned, some load and store instructions support unaligned
addresses. This affects the access address A, such that A[1:0] in the case of a word access and A[0] in the
case of a halfword access can have non-zero values.

Address calculations are normally performed using ordinary integer instructions. This means that they
normally wrap around if they overflow or underflow the address space. Another way of describing this is
that any address calculation is reduced modulo 232.

Normal sequential execution of instructions effectively calculates:
(address_of_current_instruction) + (2 or 4) /#16- and 32-bit instr mix«/

after each instruction to determine which instruction to execute next. If this calculation overflows the top of
the address space, the result is UNPREDICTABLE. In ARMv7-M this condition cannot occur because the top
of memory is defined to always have the Execute Never (XN) memory attribute associated with it. See The
system address map on page B3-704 for more details. An access violation will be reported if this scenario
occurs.

The above only applies to instructions that are executed, including those that fail their condition code check.
Most ARM implementations prefetch instructions ahead of the currently-executing instruction.

LDC, LDM, LDRD, POP, PUSH, STC, STRD, STM, VLDM, VPOP, VPUSH, VSTM, VLDR. 64, and VSTR. 64 instructions access a
sequence of words at increasing memory addresses, effectively incrementing a memory address by 4 for
each register load or store. If this calculation overflows the top of the address space, the result is
UNPREDICTABLE.

Any unaligned load or store whose calculated address is such that it would access the byte at @xFFFFFFFF and
the byte at address 0x00000000 as part of the instruction is UNPREDICTABLE.

All memory addresses used in ARMv7-M are physical addresses (PAs). ARMv7-M has no concept of
virtual addresses (VAs).

A3-82

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

A3.2 Alignment support

The system architecture provides two policies for alignment checking in ARMv7-M:
. support the unaligned accesses
. generate a fault when an unaligned access occurs.

The policy varies with the type of access. An implementation can be configured to force alignment faults
for all unaligned accesses.

Writes to the PC are restricted according to the rules outlined in Use of 0b1111 as a register specifier on
page A5-153.

A3.2.1 Alignment behavior

Address alignment affects data accesses and updates to the PC.

Alignment and data access

The following data accesses always generate an alignment fault:

. Non halfword-aligned LDREXH and STREXH

. Non word-aligned LDREX and STREX

. Non word-aligned LDRD, LDMIA, LDMDB, POP, LDC, VLDR, VLDM, and VPOP

. Non word-aligned STRD, STMIA, STMDB, PUSH, STC, VSTR, VSTM, and VPUSH.

The following data accesses support unaligned addressing, and only generate alignment faults when the
CCR.UNALIGN_TRP bit is set to 1, see Configuration and Control Register, CCR on page B3-720:

. Non halfword-aligned LDR{S}H{T} and STRH{T}
. Non halfword-aligned TBH
. Non word-aligned LDR{T} and STR{T}

Note
. LDREXD and STREXD are not supported in ARMv7-M.

. Accesses to Strongly Ordered and Device memory types must always be naturally aligned, see
Memory access restrictions on page A3-107.

The ARMv7-M alignment behavior is described in the following pseudocode:

For register definitions see Appendix H Register Index.

For ExceptionTaken() see Exception entry behavior on page B1-643.

The other functions are local and descriptive only. For the actual memory access functionality, see MemU] |
and MemA[] that are used in the instruction definitions (see Chapter A7 Instruction Details), and defined
in Pseudocode details of general memory system operations on page B2-693.

if IsUnaligned(Address) then // the data access is to an unaligned address
if AlignedAccessInstr() then // the instruction does not support unaligned accesses
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-83

1D021310 Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

UFSR.UNALIGNED = ‘1’;

ExceptionTaken(UsageFault);

else
if CCR.UNALIGN_TRP then // trap on all unaligned accesses
UFSR.UNALIGNED = ‘1’;
ExceptionTaken(UsageFault);
else
UnalignedAccess(Address); // perform an unaligned access
else
AlignedAccess(Address); // perform an aligned access

Alignment and updates to the PC

All instruction fetches must be halfword-aligned. Any exception return irregularities are captured as an
INVSTATE or INVPC UsageFault by the exception return mechanism. See Fault behavior on page B1-669.

For exception entry and return:

. exception entry using a vector with bit [0] clear causes an INVSTATE UsageFault

. areserved EXC_RETURN value causes an INVPC UsageFault

. loading an unaligned value from the stack into the PC on an exception return is UNPREDICTABLE.
For all other cases where the PC is updated:

. Bit [0] of the value is ignored when loading the PC using an ADD or MOV instruction.

Note

This applies only to the 16-bit form of the ADD (register) and MOV (register) instructions otherwise
loading the PC is UNPREDICTABLE.

. The following instructions cause an INVSTATE UsageFault if bit [0] of the value loaded to the PC
is zero:

— a BLX or BX
— an LDR to the PC
— a POP or LDM that includes the PC

. Loading the PC with a value from a memory location whose address is not word aligned is
UNPREDICTABLE.
A3-84 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D

Non-Confidential, Unrestricted Access 1D021310

A3.3

Endian support

ARM Architecture Memory Model

The address space rules (Address space on page A3-82) require that for an address A:
the word at address A consists of the bytes at addresses A, A+1, A+2 and A+3
the halfword at address A consists of the bytes at addresses A and A+1
the halfword at address A+2 consists of the bytes at addresses A+2 and A+3

the word at address A therefore consists of the halfwords at addresses A and A+2.

.

However, this does not fully specify the mappings between words, halfwords and bytes. A memory system
uses one of the following mapping schemes. This choice is known as the endianness of the memory system.

In a little-endian memory system the mapping between bytes from memory and the interpreted value in an
ARM register is illustrated in Figure A3-1.

Word at
Address A

31

a byte or halfword at address A is the least significant byte or halfword within the word at that address

a byte at a halfword address A is the least significant byte within the halfword at that address.

24i23

16115 8

7 0:

Byte at address (A+3)

Byte at address (A+2)

Byte at address (A+1)

Byte at address A

Halfword at Address A

Byte at address (A+1)

Byte at address A

Figure A3-1 Little-endian byte format

In a big-endian memory system the mapping between bytes from memory and the interpreted value in an
ARM register is illustrated in Figure A3-2.

Word at
Address A

a byte or halfword at address A is the most significant byte or halfword within the word at that address

a byte at a halfword address A is the most significant byte within the halfword at that address.

31

24

23 16

15 8

7 0

Byte at address A

Byte at address (A+1)

Byte at address (A+2)

Byte at address (A+3)

Halfword at Address A

Byte at address A

Byte at address (A+1)

Figure A3-2 Big-endian byte format

For a word address A, Figure A3-3 on page A3-86 and Figure A3-4 on page A3-86 show how the word at
address A, the halfwords at address A and A+2, and the bytes at addresses A, A+1, A+2 and A+3 map onto
each other for each endianness.

ARM DDI 0403D

1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

A3-85

ARM Architecture Memory Model

A3.3.1

MSByte MSByte-1 LSByte+1 LSByte

Word at address A

Halfword at address (A+2) Halfword at address A

Byte at address (A+3) | Byte at address (A+2) | Byte at address (A+1) Byte at address A

Figure A3-3 Little-endian memory system

MSByte MSByte-1 LSByte+1 LSByte

Word at address A

Halfword at address A Halfword at address (A+2)

Byte at address A Byte at address (A+1) | Byte at address (A+2) | Byte at address (A+3)

Figure A3-4 Big-endian memory system

The big-endian and little-endian mapping schemes determine the order in which the bytes of a word or
half-word are interpreted.

As an example, a load of a word (4 bytes) from address 0x1000 will result in an access of the bytes contained
at memory locations 0x1000, 0x1001, 0x1002 and 0x1003, regardless of the mapping scheme used. The
mapping scheme determines the significance of those bytes.

Control of endianness in ARMv7-M

ARMV7-M supports a selectable endian model in which, on a reset, a control input determines whether the
endianness is big endian (BE) or little endian (LE). This endian mapping has the following restrictions:

. The endianness setting only applies to data accesses. Instruction fetches are always little endian.
. All accesses to the SCS are little endian, see System Control Space (SCS) on page B3-708.

The AIRCR.ENDIANNESS bit indicates the endianness, see Application Interrupt and Reset Control
Register, AIRCR on page B3-717.

If an implementation requires support for big endian instruction fetches, it can implement this in the bus
fabric. See Endian support on page AppxE-953 for more information.

A3-86

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

Instruction alignment and byte ordering

Thumb instruction execution enforces 16-bit alignment on all instructions. This means that 32-bit
instructions are treated as two halfwords, hwl and hw2, with hw1 at the lower address.

In instruction encoding diagrams, hw1 is shown to the left of hw2. This results in the encoding diagrams
reading more naturally. The byte order of a 32-bit Thumb instruction is shown in Figure A3-5.

1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
32-bit Thumb instruction, hw1 32-bit Thumb instruction, hw2
Byte at Address A+1 Byte at Address A Byte at Address A+3 | Byte at Address A+2

Figure A3-5 Instruction byte order in memory

Pseudocode details of endianness
The BigEndian() pseudocode function tests whether data accesses are big-endian or little-endian:

// BigEndian()

boolean BigEndian()

return (AIRCR.ENDIANNESS == ‘1’);

A3.3.2 Element size and endianness
The effect of the endianness mapping on data applies to the size of the element(s) being transferred in the
load and store instructions. Table A3-1 shows the element size of each of the load and store instructions:.
Table A3-1 Load-store and element size association
Instruction class Instructions Element size
Load or store byte LDR{S}B{T}, STRB{T}, LDREXB, STREXB Byte
Load or store halfword LDR{S}H{T}, STRH{T}, TBH, LDREXH, STREXH Halfword
Load or store word LDR{T}, STR{T}, LDREX, STREX, VLDR.F32, VSTR.F32 Word
Load or store two words LDRD, STRD, VLDR.F64, VSTR.F64 Word
Load or store multiple LDM{IA,DB}, STM{IA,DB}, PUSH, POP, LDC, STC, VLDM, VSTM, VPUSH, VPOP Word
words
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-87

1D021310

Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

A3.3.3

Instructions to reverse bytes in a general-purpose register

When an application or device driver has to interface to memory-mapped peripheral registers or shared
memory structures that are not the same endianness as that of the internal data structures, or the endianness
of the Operating System, an efficient way of being able to explicitly transform the endianness of the data is
required.

ARMV7-M supports instructions for the following byte transformations:

REV Reverse word (four bytes) register, for transforming 32-bit representations.

REVSH Reverse halfword and sign extend, for transforming signed 16-bit representations.

REV16 Reverse packed halfwords in a register for transforming unsigned 16-bit representations.

For more information see the instruction definitions in Chapter A7 Instruction Details.

A3-88

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

A3.4 Synchronization and semaphores
Exclusive access instructions support non-blocking shared memory synchronization primitives that allow
calculation to be performed on the semaphore between the read and write phases, and scale for
multiprocessor system designs.
In ARMv7-M, the synchronization primitives provided are:
. Load-Exclusives:
— LDREX, see LDREX on page A7-305
— LDREXB, see LDREXB on page A7-306
— LDREXH, see LDREXH on page A7-307
. Store-Exclusives:
— STREX, see STREX on page A7-485
— STREXB, see STREXB on page A7-486
— STREXH, see STREXH on page A7-487
— Clear-Exclusive, CLREX, see CLREX on page A7-255.
Note
This section describes the operation of a Load-Exclusive/Store-Exclusive pair of synchronization primitives
using, as examples, the LDREX and STREX instructions. The same description applies to any other pair of
synchronization primitives:
. LDREXB used with STREXB
. LDREXH used with STREXH.
Each Load-Exclusive instruction must be used only with the corresponding Store-Exclusive instruction.
STREXD and LDREXD are not supported in ARMv7-M.
The model for the use of a Load-Exclusive/Store-Exclusive instruction pair, accessing memory address X is:
. The Load-Exclusive instruction always successfully reads a value from memory address x
. The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if
no other processor or process has performed a more recent store of address x. The Store-Exclusive
operation returns a status bit that indicates whether the memory write succeeded.
A Load-Exclusive instruction tags a small block of memory for exclusive access. The size of the tagged
block is IMPLEMENTATION DEFINED, see Tagging and the size of the tagged memory block on page A3-96.
A Store-Exclusive instruction to the same address clears the tag.
A3.4.1 Exclusive access instructions and Non-shareable memory regions
For memory regions that do not have the Shareable attribute, the exclusive access instructions rely on a local
monitor that tags any address from which the processor executes a Load-Exclusive. Any non-aborted
attempt by the same processor to use a Store-Exclusive to modify any address is guaranteed to clear the tag.
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-89

1D021310

Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

A Load-Exclusive performs a load from memory, and:
. the executing processor tags the physical memory address for exclusive access

. the local monitor of the executing processor transitions to its Exclusive Access state.
A Store-Exclusive performs a conditional store to memory, that depends on the state of the local monitor:

If the local monitor is in its Exclusive Access state

. If the address of the Store-Exclusive is the same as the address that has been tagged
in the monitor by an earlier Load-Exclusive, then the store takes place, otherwise it
is IMPLEMENTATION DEFINED whether the store takes place.

. A status value is returned to a register:
— if the store took place the status value is 0
— otherwise, the status value is 1.

. The local monitor of the executing processor transitions to its Open Access state.

If the local monitor is in its Open Access state

. no store takes place
. a status value of 1 is returned to a register.
. the local monitor remains in its Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.
When a processor writes using any instruction other than a Store-Exclusive:

. if the write is to a physical address that is not covered by its local monitor the write does not affect
the state of the local monitor

. if the write is to a physical address that is covered by its local monitor it is IMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

If the local monitor is in its Exclusive Access state and a processor performs a Store-Exclusive to any
address other than the last one from which it has performed a Load-Exclusive, it is IMPLEMENTATION
DEFINED whether the store succeeds, but in all cases the local monitor is reset to its Open Access state. In
ARMv7-M, the store must be treated as a software programming error.

—— Note

It is UNPREDICTABLE whether a store to a tagged physical address causes a tag in the local monitor to be
cleared if that store is by an observer other than the one that caused the physical address to be tagged.

Figure A3-6 on page A3-91 shows the state machine for the local monitor. Table A3-2 on page A3-91 shows
the effect of each of the operations shown in the figure.

A3-90

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

LoadExcl(X) LoadExcl(X)

| v
Open Exclusive
|—> Access Access
o [t

CLREX CLREX Store(!Tagged_address)
StoreExcl(X) Store(Tagged_address)* Store(Tagged_address)*
Store(X) StoreExcl(Tagged_address)
StoreExcl(!Tagged_address)

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExcl represents any Load-Exclusive instruction
StorcExcl represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExcl operation updates the tagged address to the most significant bits of the address x used
for the operation. For more information see the section Tagging and the size of the tagged memory block.

Figure A3-6 Local monitor state machine diagram

Note
. The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor
being constructed so that it does not hold any physical address, but instead treats any access as
matching the address of the previous LDREX. In such an implementation, the Exclusives reservation
granule defined in Tagging and the size of the tagged memory block on page A3-96 is the entire
memory address range.

. A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive operations
from other processors.

. It is UNPREDICTABLE whether the transition from Exclusive Access to Open Access state occurs when
the STR or STREX is from another observer.

Table A3-2 shows the effect of the operations shown in Figure A3-6.

Table A3-2 Effect of Exclusive instructions and write operations on local monitor

Initial state Operationa Effect Final state
Open Access CLREX No effect Open Access
StoreExc1(x) Does not update memory, returns status 1 Open Access
LoadExc1(x) Loads value from memory, tags address x Exclusive Access
Store(x) Updates memory, no effect on monitor Open Access
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-91

1D021310 Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

Table A3-2 Effect of Exclusive instructions and write operations on local monitor (continued)

Initial state Operation2 Effect Final state
Exclusive CLREX Clears tagged address Open Access
Access

StoreExc1(t) Updates memory, returns status 0 Open Access

Updates memory, returns status 0°
StoreExc1(!t) Open Access
Does not update memory, returns status 1o

LoadExc1(x) Loads value from memory, changes tag to address to x ~ Exclusive Access

Store(!t) Updates memory, no effect on monitor Exclusive Access

Exclusive Accessb
Store(t) Updates memory
Open Accessb

a. In the table:
LoadExc1 represents any Load-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction
Store represents any store operation other than a Store-Exclusive operation.
t is the tagged address, bits [31:a] of the address of the last Load-Exclusive instruction. For more information see
Tagging and the size of the tagged memory block on page A3-96.
b. IMPLEMENTATION DEFINED alternative actions.

A3.4.2 Exclusive access instructions and Shareable memory regions
For memory regions that have the Shareable attribute, exclusive access instructions rely on:

. A local monitor for each processor in the system, that tags any address from which the processor
executes a Load-Exclusive. The local monitor operates as described in Exclusive access instructions
and Non-shareable memory regions on page A3-89, except that for Shareable memory, any
Store-Exclusive described in that section as updating memory and/or returning the status value 0 is
then subject to checking by the global monitor. The local monitor can ignore exclusive accesses from
other processors in the system.

. A global monitor that tags a physical address as exclusive access for a particular processor. This tag
is used later to determine whether a Store-Exclusive to the tagged address, that has not been failed by
the local monitor, can occur. Any successful write to the tagged address by any other observer in the
shareability domain of the memory location is guaranteed to clear the tag.

For each processor in the system, the global monitor:
— holds a single tagged address

— maintains a state machine.

The global monitor can either reside in a processor block or exist as a secondary monitor at the memory
interfaces.

A3-92 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

An implementation can combine the functionality of the global and local monitors into a single unit.

Operation of the global monitor

Load-Exclusive from Shareable memory performs a load from memory, and causes the physical address of
the access to be tagged as exclusive access for the requesting processor. This access also causes the
exclusive access tag to be removed from any other physical address that has been tagged by the requesting
processor. The global monitor only supports a single outstanding exclusive access to Shareable memory per
processor.

Store-Exclusive performs a conditional store to memory:

. The store is guaranteed to succeed only if the physical address accessed is tagged as exclusive access
for the requesting processor and both the local monitor and the global monitor state machines for the
requesting processor are in the Exclusive Access state. In this case:

— astatus value of 0 is returned to a register to acknowledge the successful store

— the final state of the global monitor state machine for the requesting processor is
IMPLEMENTATION DEFINED

— if the address accessed is tagged for exclusive access in the global monitor state machine for
any other processor then that state machine transitions to Open Access state.

. If no address is tagged as exclusive access for the requesting processor, the store does not succeed:
— astatus value of 1 is returned to a register to indicate that the store failed

— the global monitor is not affected and remains in Open Access state for the requesting
processor.

. If a different physical address is tagged as exclusive access for the requesting processor, it is
IMPLEMENTATION DEFINED whether the store succeeds or not:

— if the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is
returned

— if the global monitor state machine for the processor was in the Exclusive Access state before
the Store-Exclusive it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each processor in
the system. The state machine for accesses to Shareable memory by processor (n) can respond to all the
Shareable memory accesses visible to it. This means it responds to:

. accesses generated by the associated processor (n)
. accesses generated by the other observers in the shared memory system (n).

In a shared memory system, the global monitor implements a separate state machine for each observer that
can generate a Load-Exclusive or a Store-Exclusive in the system.

Figure A3-7 on page A3-94 shows the state machine for processor(n) in a global monitor. Table A3-3 on
page A3-95 shows the effect of each of the operations shown in the figure.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-93
1D021310 Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

LoadExcT(x,n)

Open

|—> Access
|t

v

LoadExcT(x,n)

Exclusive j

CLREX(n), CLREX(!n),
LoadExc1(x,!n),
StoreExcl(x,n),
StoreExc1(x,!n),
Store(x,n), Store(x,!n)

StoreExcl(Tagged_address,!n)t
Store(Tagged_address,!n)
StoreExcl1(Tagged_address,n)*
StoreExcl(Tagged_address,n)*
Store(Tagged_address,n)*
CLREX(n)*

Access T;,

StoreExcl(Tagged_address,!n)t
Store(!Tagged_address,n)
StoreExcl1(Tagged_address,n)*
StoreExcl(!Tagged_address,n)*
Store(Tagged_address,n)*
CLREX(n)*

StoreExc1(!Tagged_address,!n)
Store(!Tagged_address,!n)
CLREX(!n)

$StoreExcl(Tagged_Address,!n) clears the monitor only if the StoreExc1 updates memory
Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExc]1 represents any Load-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExcT operation updates the tagged address to the most significant bits of the address x used
for the operation. For more information see the section Size of the tagged memory block:

Figure A3-7 Global monitor state machine diagram for a processor in a multiprocessor system

Note

. Whether a Store-Exclusive successfully updates memory or not depends on whether the address
accessed matches the tagged Shareable memory address for the processor issuing the Store-Exclusive
instruction. For this reason, Figure A3-7 and Table A3-3 on page A3-95 only show how the (!n)
entries cause state transitions of the state machine for processor(n).

. A Load-Exclusive can only update the tagged Shareable memory address for the processor issuing
the Load-Exclusive instruction.

. The effect of the CLREX instruction on the global monitor is IMPLEMENTATION DEFINED.

. It is IMPLEMENTATION DEFINED whether a modification to a non-shareable memory location can

cause a global monitor Exclusive Access to Open Access transition.

. It is IMPLEMENTATION DEFINED whether an LDREX to a non-shareable memory location can cause a

global monitor Open Access to Exclusive Access transition.

A3-94 ARM DDI 0403D

1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

ARM_2010_Q3

ARM_2010_Q3

ARM Architecture Memory Model

Table A3-3 shows the effect of the operations shown in Figure A3-7 on page A3-94.

Table A3-3 Effect of load/store operations on global monitor for processor(n)

Initial Final
rationb Effect
state? Operatio state?
Open CLREX(n), None Open
CLREX(!n)
Open StoreExc1(x,n) Does not update memory, returns status 1 Open
Open LoadExc1(x, !n) Loads value from memory, no effect on tag address for processor(n) Open
Open StoreExcl(x,!n) Depends on state machine and tag address for processor issuing Open
STREX¢
Open STR(x,n), Updates memory, no effect on monitor Open
STR(x, !'n)
Open LoadExc1(x,n) Loads value from memory, tags address x Exclusive
Exclusive LoadExc1(x,n) Loads value from memory, tags address x Exclusive
Exclusive
Exclusive CLREX(n) None. Effect on the final state is IMPLEMENTATION DEFINED. ¢
Open¢
Exclusive CLREX(!n) None Exclusive
Updates memory, returns status 0¢ Open
Exclusive StoreExcl(t,!n)
Does not update memory, returns status 1¢ Exclusive
Open
Exclusive StoreExcl(t,n) Updates memory, returns status 09
Exclusive
Open
Updates memory, returns status 0¢
Exclusive
Exclusive StoreExc1(!t,n)
Open
Does not update memory, returns status 1¢
Exclusive
Exclusive StoreExc1(!t,!n) Depends on state machine and tag address for processor issuing Exclusive
STREX
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-95

1D021310

Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

Table A3-3 Effect of load/store operations on global monitor for processor(n) (continued)

Isr,::ti:L Operation® Effect ::::ta; a
Exclusive
Exclusive Store(t,n) Updates memory ¢
Open¢
Exclusive Store(t,!n) Updates memory Open
Exclusive ~ Store(!t,n), Updates memory, no effect on monitor Exclusive
Store(!t,!n)

A3.4.3

Open = Open Access state, Exclusive = Exclusive Access state.
In the table:

LoadExc1 represents any Load-Exclusive instruction

StoreExc1 represents any Store-Exclusive instruction

Store represents any store operation other than a Store-Exclusive operation.
t is the tagged address for processor(n), bits [31:a] of the address of the last Load-Exclusive instruction issued by
processor(n), see Tagging and the size of the tagged memory block.
The result of a STREX(x, !n) or a STREX(t, !n) operation depends on the state machine and tagged address for the
processor issuing the STREX instruction. This table shows how each possible outcome affects the state machine for
processor(n).
After a successful STREX to the tagged address, the state of the state machine is IMPLEMENTATION DEFINED. However,
this state has no effect on the subsequent operation of the global monitor.
Effect is IMPLEMENTATION DEFINED. The table shows all permitted implementations.

Tagging and the size of the tagged memory block

As shown in Figure A3-6 on page A3-91 and Figure A3-7 on page A3-94, when a LDREX instruction is
executed, the resulting tag address ignores the least significant bits of the memory address:

Tagged_address == Memory_address[31:a]

The value of a in this assignment is IMPLEMENTATION DEFINED, between a minimum value of 2 and a
maximum value of 11. For example, in an implementation where a = 4, a successful LDREX of address
0x000341B4 gives a tag value of bits [31:4] of the address, giving 0x000341B. This means that the four words
of memory from 0x000341B0 to 0x000341BF are tagged for exclusive access. Subsequently, a valid STREX to
any address in this block will remove the tag.

The size of the tagged memory block is called the Exclusives reservation granule. The Exclusives
reservation granule is IMPLEMENTATION DEFINED between:

. one word, in an implementation with a == 2

. 512 words, in an implementation with a == 11.

A3-96

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

A3.4.4

A3.4.5

ARM Architecture Memory Model

Note

For the local monitor, one of the IMPLEMENTATION DEFINED options is for the monitor to treat any access as
matching the address of the previous Load-Exclusive access. In such an implementation, the Exclusives
reservation granule is the entire memory address range.

Context switch support

It is necessary to ensure that the local monitor is in the Open Access state after a context switch. In
ARMV7-M, the local monitor is changed to Open Access automatically as part of an exception entry or exit
sequence. The local monitor can also be forced to the Open Access state by a CLREX instruction.

Note

Context switching is not an application level operation. However, this information is included here to
complete the description of the exclusive operations.

A context switch might cause a subsequent Store-Exclusive to fail, requiring a load ... store sequence to be
replayed. To minimize the possibility of this happening, ARM recommends that the Store-Exclusive
instruction is kept as close as possible to the associated Load-Exclusive instruction, see Load-Exclusive and
Store-Exclusive usage restrictions.

Load-Exclusive and Store-Exclusive usage restrictions

The Load-Exclusive and Store-Exclusive instructions are designed to work together, as a pair, for example
a LDREX/STREX pair or a LDREXB/STREXB pair. As mentioned in Context switch support, ARM recommends that
the Store-Exclusive instruction always follows within a few instructions of its associated Load-Exclusive
instructions. In order to support different implementations of these functions, software must follow the notes
and restrictions given here.

These notes describe use of a LDREX/STREX pair, but apply equally to any other
Load-Exclusive/Store-Exclusive pair:

. The exclusives support a single outstanding exclusive access for each processor thread that is
executed. The architecture makes use of this by not requiring an address or size check as part of the
IsExclusivelLocal() function. If the target address of an STREX is different from the preceding LDREX in
the same execution thread, behavior can be UNPREDICTABLE. As a result, an LDREX/STREX pair can only
be relied upon to eventually succeed if they are executed with the same address.

. An explicit store to memory can cause the clearing of exclusive monitors associated with other
processors, therefore, performing a store between the LDREX and the STREX can result in a livelock
situation. As a result, code must avoid placing an explicit store between an LDREX and an STREX in a
single code sequence.

. If two STREX instructions are executed without an intervening LDREX the second STREX returns a status
value of 1. This means that:

— every STREX must have a preceding LDREX associated with it in a given thread of execution

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-97

1D021310

Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

— itis not necessary for every LDREX to have a subsequent STREX.

. An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any
thread of execution, the transaction size of a Store-Exclusive is the same as the transaction size of the
preceding Load-Exclusive that was executed in that thread. If the transaction size of a
Store-Exclusive is different from the preceding Load-Exclusive in the same execution thread,
behavior can be UNPREDICTABLE. As a result, software can rely on a Load-Exclusive/Store-Exclusive
pair to eventually succeed only if they are executed with the same address.

. An implementation might clear an exclusive monitor between the LDREX and the STREX, without any
application-related cause. For example, this might happen because of cache evictions. Code written
for such an implementation must avoid having any explicit memory accesses or cache maintenance
operations between the LDREX and STREX instructions.

. Implementations can benefit from keeping the LDREX and STREX operations close together in a single
code sequence. This minimizes the likelihood of the exclusive monitor state being cleared between
the LDREX instruction and the STREX instruction. Therefore, ARM recommends strongly a limit of 128
bytes between LDREX and STREX instructions in a single code sequence, for best performance.

. Implementations that implement coherent protocols, or have only a single master, might combine the
local and global monitors for a given processor. The IMPLEMENTATION DEFINED and UNPREDICTABLE
parts of the definitions in Pseudocode details of operations on exclusive monitors on page B2-698
are provided to cover this behavior.

. The architecture sets an upper limit of 2048 bytes on the size of a region that can be marked as
exclusive. Therefore, for performance reasons, ARM recommends that software separates objects
that will be accessed by exclusive accesses by at least 2048 bytes. This is a performance guideline
rather than a functional requirement.

. LDREX and STREX operations must be performed only on memory with the Normal memory attribute.

. If the memory attributes for the memory being accessed by an LDREX/STREX pair are changed between
the LDREX and the STREX, behavior is UNPREDICTABLE.

A3.4.6 Synchronization primitives and the memory order model
The synchronization primitives follow the memory ordering model of the memory type accessed by the
instructions. For this reason:
. Portable code for claiming a spinlock must include a DMB instruction between claiming the spinlock
and making any access that makes use of the spinlock.
. Portable code for releasing a spinlock must include a DMB instruction before writing to clear the
spinlock.
This requirement applies to code using the Load-Exclusive/Store-Exclusive instruction pairs, for example
LDREX/STREX.
A3-98 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D

Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

A3.5 Memory types and attributes and the memory order model
ARMvV7 defines a set of memory attributes with the characteristics required to support the memory and
devices in the system memory map.
The ordering of accesses for regions of memory, referred to as the memory order model, is defined by the
memory attributes. This model is described in the following sections:
. Memory types
. Summary of ARMv7 memory attributes on page A3-100
. Atomicity in the ARM architecture on page A3-101
. Normal memory on page A3-102
. Device memory on page A3-105
. Strongly-ordered memory on page A3-106
. Memory access restrictions on page A3-107
A3.5.1 Memory types
For each memory region, the most significant memory attribute specifies the memory type. There are three
mutually exclusive memory types:
. Normal
. Device
. Strongly-ordered.
Normal and Device memory regions have additional attributes.
Usually, memory used for program code and for data storage is Normal memory. Examples of Normal
memory technologies are:
. programmed Flash ROM
Note
During programming, Flash memory can be ordered more strictly than Normal memory.
. ROM
. SRAM
. DRAM and DDR memory.
System peripherals (I/O) generally conform to different access rules to Normal memory. Examples of I/O
accesses are:
. FIFOs where consecutive accesses
— add queued values on write accesses
— remove queued values on read accesses.
. interrupt controller registers where an access can be used as an interrupt acknowledge, changing the
state of the controller itself
ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-99
1D021310 Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

memory controller configuration registers that are used to set up the timing and correctness of areas
of Normal memory

memory-mapped peripherals, where accessing a memory location can cause side effects in the
system.

In ARMv7, regions of the memory map for these accesses are defined as Device or Strongly-ordered
memory. To ensure system correctness, access rules for Device and Strongly-ordered memory are more
restrictive than those for Normal memory:

both read and write accesses can have side effects
accesses must not be repeated, for example, on return from an exception

the number, order and sizes of the accesses must be maintained.

In addition, for Strongly-ordered memory, all memory accesses are strictly ordered to correspond to the
program order of the memory access instructions.

A3.5.2 Summary of ARMv7 memory attributes

Table A3-4 summarizes the memory attributes. For more information about theses attributes see:

Normal memory on page A3-102 and Shareable attribute for Device memory regions on
page A3-106, for the shareability attribute

Write-through cacheable, Write-back cacheable and Non-cacheable Normal memory on
page A3-104, for the cacheability attribute.

Table A3-4 Memory attribute summary

Me'?‘”y type Shareability Other attributes Description

attribute

Strongly- Shareable - All memory accesses to

ordered Strongly-ordered memory
occur in program order. All
Strongly-ordered regions are
Shareable.

Device Shareable - Intended to handle memory-
mapped peripherals that are
shared by several processors.

Non- - Intended to handle memory-
shareable mapped peripherals that are
used only by a single processor.
A3-100 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D

Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

Table A3-4 Memory attribute summary (continued)

Mer_nory type Shareability Other attributes Description
attribute
Normal Shareable Cacheability, one of: 2 Intended to handle Normal
memory that is shared between
Non-cacheable several processors.

Write-Through cacheable
Write-Back Write-Allocate cacheable
Write-Back no Write-Allocate cacheable

Non- Cacheability, one of: 2 Intended to handle Normal
shareable memory that is used by only a
Non-cacheable single processor.

Write-Through cacheable
Write-Back Write-Allocate cacheable
Write-Back no Write-Allocate cacheable

a. The cacheability attribute is defined independently for inner and outer cache regions.

A3.5.3

Atomicity in the ARM architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The ARM architecture description
refers to two types of atomicity, defined in:

Single-copy atomicity
Multi-copy atomicity on page A3-102.

Single-copy atomicity

A read or write operation is single-copy atomic if the following conditions are both true:

After any number of write operations to an operand, the value of the operand is the value written by
one of the write operations. It is impossible for part of the value of the operand to come from one
write operation and another part of the value to come from a different write operation.

When a read operation and a write operation are made to the same operand, the value obtained by the
read operation is one of:

— the value of the operand before the write operation
— the value of the operand after the write operation.

It is never the case that the value of the read operation is partly the value of the operand before the
write operation and partly the value of the operand after the write operation.

In ARMV7-M, the single-copy atomic processor accesses are:

all byte accesses
all halfword accesses to halfword-aligned locations

all word accesses to word-aligned locations

ARM DDI 0403D

1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-101
Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

LDM, LDC, LDC2, LDRD, STM, STC, STC2, STRD, PUSH, POP, VLDR, VSTR, VLDM, VSTM, VPUSH, and VPOP instructions are
executed as a sequence of word-aligned word accesses. Each 32-bit word access is guaranteed to be
single-copy atomic. A subsequence of two or more word accesses from the sequence might not exhibit
single-copy atomicity.

When an access is not single-copy atomic, it is executed as a sequence of smaller accesses, each of which

is single-copy atomic, at least at the byte level.

If an instruction is executed as a sequence of accesses according to these rules, some exceptions can be taken
in the sequence and cause execution of the instruction to be abandoned.

On exception return, the instruction that generated the sequence of accesses is re-executed and so any
accesses that had already been performed before the exception was taken might be repeated, see Exceptions
in Load Multiple and Store Multiple operations on page B1-658.

Note

The exception behavior for these multiple access instructions means they are not suitable for use for writes
to memory for the purpose of software synchronization.

For implicit accesses:

. Cache linefills and evictions have no effect on the single-copy atomicity of explicit transactions or
instruction fetches.

. Instruction fetches are single-copy atomic at 16-bit granularity.

Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions
are both true:

. All writes to the same location are serialized, meaning they are observed in the same order by all
observers, although some observers might not observe all of the writes.

. A read of a location does not return the value of a write until all observers observe that write.
Writes to Normal memory are not multi-copy atomic.
All writes to Device and Strongly-Ordered memory that are single-copy atomic are also multi-copy atomic.

All write accesses to the same location are serialized. Write accesses to Normal memory can be repeated up
to the point that another write to the same address is observed.

For Normal memory, serialization of writes does not prohibit the merging of writes.

A3.5.4 Normal memory
Normal memory is idempotent, meaning that it exhibits the following properties:
. read accesses can be repeated with no side effects
A3-102 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D

Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

. repeated read accesses return the last value written to the resource being read
. read accesses can prefetch additional memory locations with no side effects
. write accesses can be repeated with no side effects, provided that the contents of the location are

unchanged between the repeated writes
. unaligned accesses can be supported
. accesses can be merged before accessing the target memory system.

Normal memory can be read/write or read-only, and a Normal memory region is defined as being either
Shareable or Non-shareable.

The Normal memory type attribute applies to most memory used in a system.

Accesses to Normal memory have a weakly consistent model of memory ordering. See a standard text
describing memory ordering issues for a description of weakly consistent memory models, for example
chapter 2 of Memory Consistency Models for Shared Memory-Multiprocessors, Kourosh Gharachorloo,
Stanford University Technical Report CSL-TR-95-685. In general, for Normal memory, barrier operations
are required where the order of memory accesses observed by other observers must be controlled. This
requirement applies regardless of the cacheability and shareability attributes of the Normal memory region.

The ordering requirements of accesses described in Ordering requirements for memory accesses on
page A3-114 apply to all explicit accesses.

An instruction that generates a sequence of accesses as described in Afomicity in the ARM architecture on
page A3-101 might be abandoned as a result of an exception being taken during the sequence of accesses.
On return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

Note

For ARMv7-M, the LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH and VPOP instructions can restart or continue on
exception return, see Exceptions in Load Multiple and Store Multiple operations on page B1-658.

Non-shareable Normal memory

For a Normal memory region, the Non-shareable attribute identifies Normal memory that is likely to be
accessed only by a single processor.

A region of memory marked as Non-shareable Normal does not have any requirement to make the effect of
a cache transparent for data or instruction accesses. If other observers share the memory system, software
must use cache maintenance operations if the presence of caches might lead to coherency issues when
communicating between the observers. This cache maintenance requirement is in addition to the barrier
operations that are required to ensure memory ordering.

For Non-shareable Normal memory, the Load Exclusive and Store Exclusive synchronization primitives do
not take account of the possibility of accesses by more than one observer.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-103
1D021310 Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

Shareable Normal memory

For Normal memory, the Shareable memory attribute describes Normal memory that is expected to be
accessed by multiple processors or other system masters.

A region of Normal memory with the Sharable attribute is one for which the effect of interposing a cache,
or caches, on the memory system is entirely transparent to data accesses in the same shareability domain.
Explicit software management is needed to ensure the coherency of instruction caches.

Implementations can use a variety of mechanisms to support this management requirement, from simply not
caching accesses in Shareable regions to more complex hardware schemes for cache coherency for those
regions.

For Shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take
account of the possibility of accesses by more than one observer in the same Shareability domain.

—— Note

The Shareable concept enables system designers to specify the locations in Normal memory that must have
coherency requirements. However, to facilitate porting of software, software developers must not assume
that specifying a memory region as Non-shareable permits software to make assumptions about the
incoherency of memory locations between different processors in a shared memory system. Such
assumptions are not portable between different multiprocessing implementations that make use of the
Shareable concept. Any multiprocessing implementation might implement caches that, inherently, are
shared between different processing elements.

Write-through cacheable, Write-back cacheable and Non-cacheable Normal
memory

In addition to being Shareable or Non-shareable, each region of Normal memory can be marked as being
one of:

. Write-through cacheable

. Write-back cacheable, with an additional qualifier that marks it as one of:
— Write-back, write-allocate
— Write-back, no write-allocate

. Non-cacheable.

The cacheability attributes for a region are independent of the shareability attributes for the region. The
cacheability attributes indicate the required handling of the data region if it is used for purposes other than
the handling of shared data. This independence means that, for example, a region of memory that is marked
as being cacheable and Shareable might not be held in the cache in an implementation where Shareable
regions do not cache their data.

A3-104 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

A3.5.5 Device memory
The Device memory type attribute defines memory locations where an access to the location can cause side
effects, or where the value returned for a load can vary depending on the number of loads performed.
memory-mapped peripherals and I/O locations are examples of memory regions that normally are marked
as being Device.
For explicit accesses from the processor to memory marked as Device:
. all accesses occur at their program size
. the number of accesses is the number specified by the program.
An implementation must not repeat an access to a Device memory location if the program has only one
access to that location. In other words, accesses to Device memory locations are not restartable.
The architecture does not permit speculative accesses to memory marked as Device.
Address locations marked as Device are Non-cacheable. While writes to Device memory can be buffered,
writes can be merged only where the merge maintains:
. the number of accesses
. the order of the accesses
. the size of each access.
Multiple accesses to the same address must not change the number of accesses to that address. Coalescing
of accesses is not permitted for accesses to Device memory.
When a Device memory operation has side effects that apply to Normal memory regions, software must use
a Memory Barrier to ensure correct execution. An example is programming the configuration registers of a
memory controller with respect to the memory accesses it controls.
All explicit accesses to Device memory must comply with the ordering requirements of accesses described
in Ordering requirements for memory accesses on page A3-114.
An instruction that generates a sequence of accesses as described in Afomicity in the ARM architecture on
page A3-101 might be abandoned as a result of an exception being taken during the sequence of accesses.
On return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

Note

Do not use an instruction that generates a sequence of accesses to access Device memory if the instruction
might restart after an exception and repeat any write accesses, see Exceptions in Load Multiple and Store
Multiple operations on page B1-658 for more information.
Any unaligned access that is not faulted by the alignment restrictions and accesses Device memory has
UNPREDICTABLE behavior.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-105

1D021310

Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

A3.5.6

Shareable attribute for Device memory regions

Device memory regions can be given the Shareable attribute. This means that a region of Device memory
can be described as either:

. Shareable Device memory

. Non-shareable Device memory.

Non-shareable Device memory is defined as only accessible by a single processor. An example of a system
supporting Shareable and Non-shareable Device memory is an implementation that supports both:

. a local bus for its private peripherals

. system peripherals implemented on the main shared system bus.

Such a system might have more predictable access times for local peripherals such as watchdog timers or
interrupt controllers. In particular, a specific address in a Non-shareable Device memory region might
access a different physical peripheral for each processor.

Strongly-ordered memory

The Strongly-ordered memory type attribute defines memory locations where an access to the location can
cause side effects, or where the value returned for a load can vary depending on the number of loads
performed. Examples of memory regions normally marked as being Strongly-ordered are memory-mapped
peripherals and I/O locations.

For explicit accesses from the processor to memory marked as Strongly-ordered:
. all accesses occur at their program size

. the number of accesses is the number specified by the program.

An implementation must not perform more accesses to a Strongly-ordered memory location than are
specified by a simple sequential execution of the program, except as a result of an exception. This section
describes this permitted effect of an exception.

The architecture does not permit speculative data accesses to memory marked as Strongly-ordered.

Address locations in Strongly-ordered memory are not held in a cache, and are always treated as Shareable
memory locations.

All explicit accesses to Strongly-ordered memory must correspond to the ordering requirements of accesses
described in Ordering requirements for memory accesses on page A3-114.

An instruction that generates a sequence of accesses as described in Afomicity in the ARM architecture on
page A3-101 might be abandoned as a result of an exception being taken during the sequence of accesses.
On return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

A3-106

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

Note

Do not use an instruction that generates a sequence of accesses to access Strongly-ordered memory if the
instruction might restart after an exception and repeat any write accesses, see Exceptions in Load Multiple
and Store Multiple operations on page B1-658 for more information.

Any unaligned access that is not faulted by the alignment restrictions and accesses Strongly-ordered
memory has UNPREDICTABLE behavior.

A3.5.7 Memory access restrictions

The following restrictions apply to memory accesses:

For any access X, the bytes accessed by X must all have the same memory type attribute, otherwise
the behavior of the access is UNPREDICTABLE. That is, an unaligned access that spans a boundary
between different memory types is UNPREDICTABLE.

For any two memory accesses X and Y that are generated by the same instruction, the bytes accessed
by X and Y must all have the same memory type attribute, otherwise the results are UNPREDICTABLE.
For example, an LDC, LDM, LDRD, STC, STM, STRD, VSTM, VLDM, VPUSH, VPOP, VLDR, or VSTR that spans a
boundary between Normal and Device memory is UNPREDICTABLE.

An instruction that generates an unaligned memory access to Device or Strongly-ordered memory is
UNPREDICTABLE.

For instructions that generate accesses to Device or Strongly-ordered memory, implementations must
not change the sequence of accesses specified by the pseudocode of the instruction. This includes not
changing:

— how many accesses there are

— the time order of the accesses at any particular memory-mapped peripheral

— the data sizes and other properties of each access.

In addition, processor implementations expect any attached memory system to be able to identify the
memory type of an accesses, and to obey similar restrictions with regard to the number, time order,
data sizes and other properties of the accesses.

Exceptions to this rule are:

— A processor implementation can break this rule, provided that the information it supplies to

the memory system enables the original number, time order, and other details of the accesses
to be reconstructed. In addition, the implementation must place a requirement on attached
memory systems to do this reconstruction when the accesses are to Device or Strongly-ordered
memory.
For example, an implementation with a 64-bit bus might pair the word loads generated by an
LDM into 64-bit accesses. This is because the instruction semantics ensure that the 64-bit access
is always a word load from the lower address followed by a word load from the higher address.
However the implementation must permit the memory systems to unpack the two word loads
when the access is to Device or Strongly-ordered memory.

ARM DDI 0403D
1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-107
Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

— Any implementation technique that produces results that cannot be observed to be different
from those described above is legitimate.

LDM, STM, PUSH, POP, VLDM and VSTM instructions that are used with the IT instruction are restartable if
interrupted during execution. Restarting a load or store instruction is incompatible with the Device
and Strongly Ordered memory access rules. For details of the architecture constraints associated with
these instructions in the exception model see Exceptions in Load Multiple and Store Multiple
operations on page B1-658.

Any multi-access instruction that loads or stores the PC must access only Normal memory. If the
instruction accesses Device or Strongly-ordered memory the result is UNPREDICTABLE.

Any instruction fetch must access only Normal memory. If it accesses Device or Strongly-ordered
memory, the result is UNPREDICTABLE. For example, instruction fetches must not be performed to an
area of memory that contains read-sensitive devices, because there is no ordering requirement
between instruction fetches and explicit accesses.

To ensure correctness, read-sensitive locations must be marked as non-executable (see Privilege level
access controls for instruction accesses on page A3-109).

A3-108

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

A3.6

A3.6.1

A3.6.2

ARM Architecture Memory Model

Access rights
ARMYV7 includes additional attributes for memory regions, that enable:

. Data accesses to be restricted, based on the privilege of the access. See Privilege level access controls
for data accesses.

. Instruction fetches to be restricted, based on the privilege of the process or thread making the fetch.
See Privilege level access controls for instruction accesses.

Privilege level access controls for data accesses

The memory attributes can define that a memory region is:
. not accessible to any accesses

. accessible only to Privileged accesses

. accessible to Privileged and Unprivileged accesses.

The access privilege level is defined separately for explicit read and explicit write accesses. However, a
system that defines the memory attributes is not required to support all combinations of memory attributes
for read and write accesses.

A Privileged access is an access made during privileged execution, as a result of a load or store operation
other than LDRT, STRT, LDRBT, STRBT, LDRHT, STRHT, LDRSHT, or LDRSBT.

An Unprivileged access is an access made as a result of load or store operation performed in one of these
cases:

. when the current execution mode is configured for Unprivileged access only

. when the processor is in any mode and the access is made as a result of a LDRT, STRT, LDRBT, STRBT,
LDRHT, STRHT, LDRSHT, or LDRSBT instruction.

An exception occurs if the processor attempts a data access that the access rights do not permit. For example,
a MemManage exception occurs if the processor mode is Unprivileged and the processor attempts to access
a memory region that is marked as only accessible to Privileged accesses.

Note

Data access control is only supported when a Memory Protection Unit is implemented and enabled, see
Protected Memory System Architecture, PMSAv7 on page B3-761.

Privilege level access controls for instruction accesses

Memory attributes can define that a memory region is:
. not accessible for execution
. accessible for execution by Privileged processes only

. accessible for execution by Privileged and Unprivileged processes.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-109

1D021310

Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

To define the instruction access rights to a memory region, the memory attributes describe, separately, for
the region:

. its read access rights

. whether it is suitable for execution.

For example, a region that is accessible for execution by Privileged processes has the memory attributes:
. accessible only to Privileged read accesses

. suitable for execution.

This means there is some linkage between the memory attributes that define the accessibility of a region to
explicit memory accesses, and those that define that a region can be executed.

A MemManage exception occurs if a processor attempts to execute code from a memory location with
attributes that do not permit code execution.

— Note
Instruction access control is fully supported when a Memory Protection Unit is implemented and enabled,

see Protected Memory System Architecture, PMSAv7 on page B3-761.

Instruction execution access control is also supported in the default address map, see The system address
map on page B3-704.

A3-110

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

A3.7 Memory access order

ARMUvV7 provides a set of three memory types, Normal, Device, and Strongly-ordered, with well-defined
memory access properties.

The ARMvV7 application-level view of the memory attributes is described in:
. Memory types and attributes and the memory order model on page A3-99
. Access rights on page A3-109.

When considering memory access ordering, an important feature is the Shareable memory attribute that
indicates whether a region of memory can be shared between multiple processors, and therefore requires an
appearance of cache transparency in the ordering model.

The key issues with the memory order model depend on the target audience:

. For software programmers, considering the model at the application level, the key factor is that for
accesses to Normal memory, barriers are required in some situations where the order of accesses
observed by other observers must be controlled.

. For silicon implementers, considering the model at the system level, the Strongly-ordered and Device
memory attributes place certain restrictions on the system designer in terms of what can be built and
when to indicate completion of an access.

Note

Implementations remain free to choose the mechanisms required to implement the functionality of
the memory model.

More information about the memory order model is given in the following subsections:
. Reads and writes

. Ordering requirements for memory accesses on page A3-114

. Memory barriers on page A3-116.

Additional attributes and behaviors relate to the memory system architecture. These features are defined in
the system level section of this manual, see Protected Memory System Architecture, PMSAv7 on
page B3-761.

A3.7.1 Reads and writes

Each memory access is either a read or a write. Explicit memory accesses are the memory accesses required
by the function of an instruction. The following can cause memory accesses that are not explicit:

. instruction fetches
. cache loads and write-backs

Except where otherwise stated, the memory ordering requirements only apply to explicit memory accesses.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-111
1D021310 Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

Reads
Reads are defined as memory operations that have the semantics of a load.

The memory accesses of the following instructions are reads:
. LDR, LDRB, LDRH, LDRSB, and LDRSH

. LDRT, LDRBT, LDRHT, LDRSBT, and LDRSHT

. LDREX, LDREXB, and LDREXH

. LDM{IA,DB}, LDRD, POP, VLDM, VLDR, and VPOP

. LDC and LDC2

. the return of status values by STREX, STREXB, and STREXH
. TBB and TBH.

Writes
Writes are defined as memory operations that have the semantics of a store.

The memory accesses of the following instructions are Writes:
. STR, STRB, and STRH

. STRT, STRBT, and STRHT

. STREX, STREXB, and STREXH

. STM{IA,DB}, STRD, PUSH, VSTR, VSTM, and VPUSH

. STC and STC2

Synchronization primitives

Synchronization primitives must ensure correct operation of system semaphores in the memory order
model. The synchronization primitive instructions are defined as those instructions that are used to ensure
memory synchronization:

o LDREX, STREX, LDREXB, STREXB, LDREXH, STREXH.

For details of the Load-Exclusive, Store-Exclusive and Clear-Exclusive instructions see Synchronization
and semaphores on page A3-89.

The Load-Exclusive and Store-Exclusive instructions are supported to Shareable and Non-shareable
memory. Non-shareable memory can be used to synchronize processes that are running on the same
processor. Shareable memory must be used to synchronize processes that might be running on different
processors.

Observability and completion
The set of observers that can observe a memory access is defined by the system.

For all memory:

. a write to a location in memory is said to be observed by an observer when a subsequent read of the
location by the same observer will return the value written by the write

A3-112

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

. a write to a location in memory is said to be globally observed for a shareability domain when a
subsequent read of the location by any observer within that shareability domain that is capable of
observing the write will return the value written by the write

. aread of a location in memory is said to be observed by an observer when a subsequent write to the
location by the same observer will have no effect on the value returned by the read

. a read of a location in memory is said to be globally observed for a shareability domain when a
subsequent write to the location by any observer within that shareability domain that is capable of
observing the write will have no effect on the value returned by the read.

Additionally, for Strongly-ordered memory:
. A read or write of a memory-mapped location in a peripheral that exhibits side-effects is said to be
observed, and globally observed, only when the read or write:
— meets the general conditions listed
— can begin to affect the state of the memory-mapped peripheral
— cantrigger all associated side effects, whether they affect other peripheral devices, processors,
Or memory.

For all memory, the ARMv7-M completion rules are defined as:

. A read or write is complete for a shareability domain when all of the following are true:
— the read or write is globally observed for that shareability domain
— any instruction fetches by observers within the shareability domain have observed the read or

write.

. A cache or branch predictor maintenance operation is complete for a shareability domain when the
effects of operation are globally observed for that shareability domain.

Side effect completion in Strongly-ordered and Device memory

The completion of a memory access in Strongly-ordered or Device memory is not guaranteed to be
sufficient to determine that the side effects of the memory access are visible to all observers. The mechanism
that ensures the visibility of side-effects of a memory access is IMPLEMENTATION DEFINED, for example
provision of a status register that can be polled.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-113
1D021310 Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

A3.7.2

Ordering requirements for memory accesses

ARMvV7-M defines access restrictions in the permitted ordering of memory accesses. These restrictions
depend on the memory attributes of the accesses involved.

Two terms used in describing the memory access ordering requirements are:

Address dependency

An address dependency exists when the value returned by a read access is used to compute
the address of a subsequent read or write access. An address dependency exists even if the
value read by the first read access does not change the address of the second read or write
access. This might be the case if the value returned is masked off before it is used, or if it
has no effect on the predicted address value for the second access.

Control dependency

A control dependency exists when the data value returned by a read access is used to
determine the condition code flags, and the values of the flags are used for condition code
evaluation to determine the address of a subsequent read access. This address determination
might be through conditional execution, or through the evaluation of a branch

Figure A3-8 on page A3-115 shows the memory ordering between two explicit accesses Al and A2, where
Al occurs before A2 in program order. The symbols used in the figure are as follows:

<

Accesses must be globally observed in program order, that is, A1 must be globally observed
strictly before A2.

Accesses can be globally observed in any order, provided that the requirements of
uniprocessor semantics, for example respecting dependencies between instructions in a
single processor, are maintained.

The following additional restrictions apply to the ordering of memory accesses that have
this symbol:

. If there is an address dependency then the two memory accesses are observed in
program order.
This ordering restriction does not apply if there is only a control dependency between
the two read accesses.

If there is both an address dependency and a control dependency between two read
accesses the ordering requirements of the address dependency apply.

. If the value returned by a read access is used as data written by a subsequent write
access, then the two memory accesses are observed in program order.

. It is impossible for an observer to observe a write access to a memory location if that
location would not be written to in a sequential execution of a program

. It is impossible for an observer to observe a write value to a memory location if that
value would not be written in a sequential execution of a program.

In Figure A3-8 on page A3-115, an access refers to a read or a write access to the specified
memory type. For example, Device access, Non-shareable refers to a read or write access
to Non-shareable Device memory.

A3-114

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

i Strongly-

A2 Normal Device access gly

A1 access ordered

Non-shareable| Shareable access
Normal access - - - -
Device access, Non-shareable - < - <
Device access, Shareable - - < <
Strongly-ordered access - < < <

Figure A3-8 Memory ordering restrictions

There are no ordering requirements for implicit accesses to any type of memory.

Program order for instruction execution
The program order of instruction execution is the order of the instructions in the control flow trace.

Explicit memory accesses in an execution can be either:
Strictly Ordered
Denoted by <. Must occur strictly in order.
Ordered Denoted by <=. Can occur either in order or simultaneously.

Multiple load and store instructions, LDC, LDC2, LDMDB, LDMIA, LDRD, POP, PUSH, STC, STC2, STMDB, STMIA, STRD,
VLDR.F64, VSTR.F64, VLDM, VPUSH, VSTM, and VPOP, generate multiple word accesses, each of which is a separate
access for the purpose of determining ordering.

The rules for determining program order for two accesses Al and A2 are:
If A1 and A2 are generated by two different instructions:

. Al < A2 if the instruction that generates A1 occurs before the instruction that generates A2 in
program order

. A2 < Al if the instruction that generates A2 occurs before the instruction that generates Al in
program order.

If A1 and A2 are generated by the same instruction:

. If Al and A2 are two word loads generated by an LDC, LDC2, LDMDB, LDMIA or POP instruction, or two
word stores generated by a PUSH, STC, STC2, STMDB, or STMIA instruction, excluding LDMDB, LDMIA or POP
instructions with a register list that includes the PC:

— Al <= A2 if the address of Al is less than the address of A2
— A2 <= Al if the address of A2 is less than the address of Al.

. If A1 and A2 are two word loads generated by an LDMDB, LDMIA or POP instruction with a register list
that includes the PC, the program order of the memory accesses is not defined.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-115

1D021310

Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

A3.7.3

. If A1 and A2 are two word loads generated by an LDRD instruction or two word stores generated by
an STRD instruction, the program order of the memory accesses is not defined.

. For any instruction or operation not explicitly mentioned in this section, if the single-copy atomicity
rules described in Single-copy atomicity on page A3-101 mean the operation becomes a sequence of
accesses, then the time-ordering of those accesses is not defined.

Memory barriers

Memory barrier is the general term applied to an instruction, or sequence of instructions, used to force
synchronization events by a processor with respect to retiring load and store instructions in a processor. A
memory barrier is used to guarantee both:

. completion of preceding load and store instructions to the programmers’ model

. flushing of any prefetched instructions before the memory barrier event.

ARMV7-M requires three explicit memory barriers to support the memory order model described in this
chapter. The three memory barriers are:

. Data Memory Barrier, see Data Memory Barrier (DMB)
. Data Synchronization Barrier, see Data Synchronization Barrier (DSB) on page A3-117
. Instruction Synchronization Barrier, see Instruction Synchronization Barrier (ISB) on page A3-118.

The DMB and DSB memory barriers affect reads and writes to the memory system generated by load and
store instructions. Instruction fetches are not explicit accesses and are not affected.

Note

In ARMv7-M, memory barrier operations might be required in conjunction with data or unified cache and
branch predictor maintenance operations.

Data Memory Barrier (DMB)

The DMB instruction is a data memory barrier. The processor that executes the DMB instruction is referred to
as the executing processor, Pe. The DMB instruction takes the required shareability domain and required
access types as arguments.

Note

ARMV7-M only supports system-wide barriers with no shareability domain or access type limitations.

A DMB creates two groups of memory accesses, Group A and Group B:

Group A Contains:

. all explicit memory accesses of the required access types from observers within the
same shareability domain as Pe that are observed by Pe before the DMB instruction.
This includes any accesses of the required access types and required shareability
domain performed by Pe.

A3-116

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

. all loads of required access types from observers within the same shareability domain
as Pe that have been observed by any given observer Py within the same required
shareability domain as Pe before Py has performed a memory access that is a member

of Group A.
Group B Contains:
. all explicit memory accesses of the required access types by Pe that occur in program

order after the DMB instruction

. all explicit memory accesses of the required access types by any given observer Px
within the same required shareability domain as Pe that can only occur after Px has
observed a store that is a member of Group B.

Any observer with the same required shareability domain as Pe observes all members of Group A before it
observes any member of Group B. Where members of Group A and Group B access the same
memory-mapped peripheral, all members of Group A will be visible at the memory-mapped peripheral
before any members of Group B are visible at that peripheral.

Note

. A memory access might be in neither Group A nor Group B. The DMB does not affect the order of
observation of such a memory access.

. The second part of the definition of Group A is recursive. Ultimately, membership of Group A
derives from the observation by Py of a load before Py performs an access that is a member of Group
A as a result of the first part of the definition of Group A.

. The second part of the definition of Group B is recursive. Ultimately, membership of Group B derives
from the observation by any observer of an access by Pe that is a member of Group B as a result of
the first part of the definition of Group B.

DMB only affects memory accesses. It has no effect on the ordering of any other instructions executing on the
processor.

For details of the DMB instruction see DMB on page A7-267.

Data Synchronization Barrier (DSB)

The DSB instruction is a special memory barrier, that synchronizes the execution stream with memory
accesses. The DSB instruction takes the required shareability domain and required access types as arguments.
A DSB behaves as a DMB with the same arguments, and also has the additional properties defined here.

Note
ARMvV7-M only supports system-wide barriers with no shareability domain or access type limitations.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-117

1D021310

Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

A DSB completes when both:

. all explicit memory accesses that are observed by Pe before the DSB is executed, are of the required
access types, and are from observers in the same required shareability domain as Pe, are complete for
the set of observers within the required shareability domain

. all explicit accesses to the system control space (SCS) that result in a context altering operation issued
by Pe before the DSB are complete.

In addition, no instruction that appears in program order after the DSB instruction can execute until the DSB
completes.

For details of the DSB instruction see DSB on page A7-269.

Instruction Synchronization Barrier (ISB)

An ISB instruction flushes the pipeline in the processor, so that all instructions that come after the ISB
instruction in program order are fetched from cache or memory only after the ISB instruction has completed.
Using an ISB ensures that the effects of context altering operations executed before the ISB are visible to the
instructions fetched after the ISB instruction. Examples of context altering operations that might require the
insertion of an ISB instruction to ensure the operations are complete are:

. ensuring a system control update has occurred

. re-prioritizing the exceptions that have configurable priority.

In addition, any branches that appear in program order after the ISB instruction are written into the branch
prediction logic with the context that is visible after the ISB instruction. This is needed to ensure correct
execution of the instruction stream.

Any context altering operations appearing in program order after the ISB instruction only take effect after
the ISB has been executed.

An ARMv7-M implementation must choose how far ahead of the current point of execution it prefetches
instructions. This can be either a fixed or a dynamically varying number of instructions. As well as choosing
how many instructions to prefetch, an implementation can choose which possible future execution path to
prefetch along. For example, after a branch instruction, it can prefetch either the instruction appearing in
program order after the branch or the instruction at the branch target. This is known as branch prediction.

A potential problem with all forms of instruction prefetching is that the instruction in memory might be
changed after it was prefetched but before it is executed. If this happens, the modification to the instruction
in memory does not normally prevent the already prefetched copy of the instruction from executing to
completion. The memory barrier instructions, ISB, DMB or DSB as appropriate, are used to force execution
ordering where necessary.

For details of the ISB instruction see /SB on page A7-275.

A3-118 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

Synchronization requirements for System Control Space updates

The architecture defines the SCS as Strongly-ordered memory. In addition to the rules for the behavior of
Strongly-ordered memory, the architecture requires that the side-effects of any access to the SCS that
performs a context-altering operation take effect when the access completes. Software can issue a DSB
instruction to guarantee completion of a previous SCS access.

The architecture guarantees the visibility of the effects of a context-altering operation only for instructions
fetched after the completion of the SCS access that performed the context-altering operation. Executing an
ISB instruction, or performing an exception entry or exception return, guarantees the refetching of any
instructions that have been fetched but not executed.

To guarantee that the side effects of a previous SCS access are visible, software can execute a a DSB
instruction followed by an ISB instruction.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-119
1D021310 Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

A3.8

A3.8.1

A3.8.2

Caches and memory hierarchy

Support for caches in ARMv7-M is limited to memory attributes. These can be exported on a supporting
bus protocol such as AMBA (AHB or AXI protocols) to support system caches.

In situations where a breakdown in coherency can occur, software must manage the caches using cache
maintenance operations that are memory mapped and IMPLEMENTATION DEFINED.

Introduction to caches

A cache is a block of high-speed memory locations containing both address information (commonly known
as a TAG) and the associated data. The purpose is to increase the average speed of a memory access. Caches
operate on two principles of locality:

Spatial locality an access to one location is likely to be followed by accesses from adjacent
locations, for example, sequential instruction execution or usage of a data structure

Temporal locality an access to an area of memory is likely to be repeated within a short time period,
for example, execution of a code loop

To minimize the quantity of control information stored, the spatial locality property is used to group several
locations together under the same TAG. This logical block is commonly known as a cache line. When data
is loaded into a cache, access times for subsequent loads and stores are reduced, resulting in overall
performance benefits. An access to information already in a cache is known as a cache hit, and other
accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the processor
wants to access a cacheable location, the cache is checked. If the access is a cache hit, the access occurs
immediately, otherwise a location is allocated and the cache line loaded from memory. Different cache
topologies and access policies are possible, however they must comply with the memory coherency model
of the underlying architecture.

Caches introduce a number of potential problems, mainly because of:
. memory accesses occurring at times other than when the programmer would normally expect them
. the existence of multiple physical locations where a data item can be held.

Implication of caches to the application programmer

Caches are largely invisible to the application programmer, but can become visible due to a breakdown in
coherency. Such a breakdown can occur when:

. memory locations are updated by other agents in the systems
. memory updates made from the application code must be made visible to other agents in the system.
For example:

In systems with a DMA that reads memory locations that are held in the data cache of a processor, a
breakdown of coherency occurs when the processor has written new data in the data cache, but the DMA
reads the old data held in memory.

A3-120

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

ARM Architecture Memory Model

In a Harvard architecture of caches, a breakdown of coherency occurs when new instruction data has been
written into the data cache and/or to memory, but the instruction cache still contains the old instruction data.

A3.8.3 Preloading caches

The ARM architecture provides memory system hints PLD (Preload Data) and PLI (Preload instruction) to
permit software to communicate the expected use of memory locations to the hardware. The memory system
can respond by taking actions that are expected to speed up the memory accesses if and when they do occur.
The effect of these memory system hints is IMPLEMENTATION DEFINED. Typically, implementations will use
this information to bring the data or instruction locations into caches that have faster access times than
Normal memory.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the
functional behavior of the device. The instructions do not generate exceptions, but the memory system
operations might generate an imprecise fault (asynchronous exception) due to the memory access.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A3-121
1D021310 Non-Confidential, Unrestricted Access

ARM Architecture Memory Model

A3-122 Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

Chapter A4
The ARMv7-M Instruction Set

This chapter describes the ARMv7-M Thumb instruction set, including the additional instructions added by
the Floating-point extension. It contains the following sections:

About the instruction set on page A4-124

Unified Assembler Language on page A4-126

Branch instructions on page A4-129

Data-processing instructions on page A4-130

Status register access instructions on page A4-140

Load and store instructions on page A4-141

Load Multiple and Store Multiple instructions on page A4-144
Miscellaneous instructions on page A4-145
Exception-generating instructions on page A4-146
Coprocessor instructions on page A4-147

Floating-point load and store instructions on page A4-148
Floating-point register transfer instructions on page A4-149
Floating-point data-processing instructions on page A4-150.

ARM DDI 0403D

1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

A4-123

The ARMv7-M Instruction Set

A4.1

A4.1.1

About the instruction set

ARMV7-M supports a large number of 32-bit instructions that Thumb-2 technology introduced into the
Thumb instruction set. Much of the functionality available is identical to the ARM instruction set supported
alongside the Thumb instruction set in ARMv6T2 and other ARMv7 profiles. This chapter describes the
functionality available in the ARMv7-M Thumb instruction set, and the Unified Assembler Language
(UAL) that can be assembled to either the Thumb or ARM instruction sets.

Thumb instructions are either 16-bit or 32-bit, and are aligned on a two-byte boundary. 16-bit and 32-bit
instructions can be intermixed freely. Many common operations are most efficiently executed using 16-bit
instructions. However:

. Most 16-bit instructions can only access eight of the general purpose registers, R0-R7. These are
known as the low registers. A small number of 16-bit instructions can access the high registers,
R8-R15.

. Many operations that would require two or more 16-bit instructions can be more efficiently executed
with a single 32-bit instruction.

The ARM and Thumb instruction sets are designed to interwork freely. Because ARMv7-M only supports
Thumb instructions, interworking instructions in ARMv7-M must only reference Thumb state execution,
see ARMv7-M and interworking support for more details.

In addition, see:
. Chapter A5 The Thumb Instruction Set Encoding for encoding details of the Thumb instruction set
. Chapter A7 Instruction Details for detailed descriptions of the instructions.

ARMv7-M and interworking support

Thumb interworking is held as bit [0] of an interworking address. Interworking addresses are used in the
following instructions:

. BX or BLX
. an LDR or LDM that loads the PC.

ARMYV7-M only supports the Thumb instruction execution state, therefore the value of address bit [0] must
be 1 in interworking instructions, otherwise a fault occurs. All instructions ignore bit [0] and write bits
[31:1]:°0° when updating the PC.
16-bit instructions that update the PC behave as follows:
. ADD (register) and MOV (register) branch without interworking

—— Note

ARM deprecates the use of Rd as the PC in the ADD (SP plus register) 16-bit instruction.

. B branches without interworking
. (BZ and CBNZ branch without interworking.
. BLX and BX interwork on the value in Rm

A4-124

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

A4.1.2

The ARMv7-M Instruction Set

. POP interworks on the value loaded to the PC

. BKPT and SVC cause exceptions and are not considered to be interworking instructions.

32-bit instructions that update the PC behave as follows:

. B branches without interworking

. BL branches without interworking

. LDM and LDR support interworking using the value written to the PC
. TBB and TBH branch without interworking.

For more details, see the description of the BXWritePC() function in Pseudocode details of ARM core register
operations on page A2-46.

Conditional execution

Conditionally executed means that the instruction only has its normal effect on the programmers’ model
operation, memory and coprocessors if the N, Z, C and V flags in the APSR satisfy a condition specified in
the instruction. If the flags do not satisfy this condition, the instruction acts as a NOP, that is, execution
advances to the next instruction as normal, including any relevant checks for exceptions being taken, but
has no other effect.

Most Thumb instructions are unconditional. Conditional execution in Thumb code can be achieved using
any of the following instructions:

. A 16-bit conditional branch instruction, with a branch range of —256 to +254 bytes. See B on
page A7-239 for details. Before the additional instruction support in ARMv6T?2, this was the only
mechanism for conditional execution in Thumb code.

. A 32-bit conditional branch instruction, with a branch range of approximately + 1MB. See B on
page A7-239 for details.

. 16-bit Compare and Branch on Zero and Compare and Branch on Nonzero instructions, with a branch
range of +4 to +130 bytes. See CBNZ, CBZ on page A7-251 for details.

. A 16-bit If-Then instruction that makes up to four following instructions conditional. See /T on
page A7-277 for details. The instructions that are made conditional by an IT instruction are called its
IT block. Instructions in an IT block must either all have the same condition, or some can have one
condition, and others can have the inverse condition.

See Conditional execution on page A7-208 for more information about conditional execution.

ARM DDI 0403D Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A4-125

1D021310

Non-Confidential, Unrestricted Access

The ARMv7-M Instruction Set

A4.2

A4.21

Unified Assembler Language

This document uses the ARM Unified Assembler Language (UAL). This assembly language syntax
provides a canonical form for all ARM and Thumb instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. In addition, it assumes
that instructions and data items can be given labels. It does not specify the syntax to be used for labels, nor
what assembler directives and options are available. See your assembler documentation for these details.

Earlier ARM assembly language mnemonics are still supported as synonyms, as described in the instruction
details.

Note

Most earlier Thumb assembly language mnemonics are not supported. See Appendix B Legacy Instruction
Mnemonics for details.

UAL includes instruction selection rules that specify which instruction encoding is selected when more than
one can provide the required functionality. For example, both 16-bit and 32-bit encodings exist for an

ADD RO,R1,R2 instruction. The most common instruction selection rule is that when both a 16-bit encoding
and a 32-bit encoding are available, the 16-bit encoding is selected, to optimize code density.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding
is selected. These are useful when disassembling code, to ensure that subsequent assembly produces the
original code, and in some other situations.

Conditional instructions

For maximum portability of UAL assembly language between the ARM and Thumb instruction sets, ARM
recommends that:

. IT instructions are written before conditional instructions in the correct way for the Thumb
instruction set.

. When assembling to the ARM instruction set, assemblers check that any IT instructions are correct,
but do not generate any code for them.

Although other Thumb instructions are unconditional, all instructions that are made conditional by an IT
instruction must be written with a condition. These conditions must match the conditions imposed by the IT
instruction. For example, an ITTEE EQ instruction imposes the EQ condition on the first two following
instructions, and the NE condition on the next two. Those four instructions must be written with EQ, EQ, NE
and NE conditions respectively.

Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if
they are the last instruction in the IT block, but not otherwise.

The branch instruction encodings that include a condition field cannot be made conditional by an IT
instruction. If the assembler syntax indicates a conditional branch that correctly matches a preceding IT
instruction, it is assembled using a branch instruction encoding that does not include a condition field.

A4-126

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. ARM DDI 0403D
Non-Confidential, Unrestricted Access 1D021310

The ARMv7-M Instruction Set

A4.2.2 Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a
fixed offset from the instruction being specified. The assembler must:

1.

Calculate the PC or Align(PC,4) value of the instruction. The PC value of an instruction is its address
plus 4 for a Thumb instruction. The Align(PC,4) value of an instruction is its PC value ANDed with
OXFFFFFFFC to force it to be word-aligned.

Calculate the offset from the PC or Align(PC,4) value of the instruction to the address of the labelled
instruction or literal data item.

Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or A1ign(PC,4) value
and adds the calculated offset to form the required address.

Note
For instructions that encode a subtraction operation, if the instruction cannot encode the calculated
offset, but can encode minus the calculated offset, the instruction encoding specifies a subtraction of
minus the calculated offset.

The syntax of the following instructions includes a label:

B, BL, and BLX (immediate). The assembler syntax for these instructions always specifies the label of
the instruction that they branch to. Their encodings specify a sign-extended immediate offset that is
added to the PC value of the instruction to form the target address of the branch.

(BNZ and CBZ. The assembler syntax for these instructions always specifies the label of the instruction
that they branch to. Their encodings specify a zero-extended immediate offset that is added to the PC
value of the instruction to form the target address of the branch. They do not support backward
branches.

LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, VLDR, and VSTR. The normal assembler syntax of
these load instructions can specify the label of a literal data item that is to be loaded. The encodings
of these instructions specify a zero-extended immediate offset that is either added to or subtracted
from the ATign(PC,4) value of the instruction to form the address of the data item. A few such
encodings perform a fixed addition or a fixed subtraction and must only be used when that operation
is required, but most contain a bit that specifies whether the offset is to be added or subtracted.

When the assembler calculates an offset of 0 for the normal syntax of these instructions, it must
assemble an encoding that adds 0 to the A1ign(PC,4) value of the instruction. Encodings that subtract
0 from the A1ign(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for these instructions that specifies the addition or subtraction and the
immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

+/- Is + or omitted to specify that the immediate offset is to be added to the A1ign(PC,4) value,
or - if it is to be subtracted.

<imm> Is the immediate offset.

This alternative syntax makes it possible to assemble the encodings that subtract 0 from the
Align(PC,4) value, and to disassemble them to a syntax that can be re-assembled correctly.

ARM DDI 0403D
1D021310

Copyright © 2006-2008, 2010 ARM Limited. All rights reserved. A4-127
Non-Confidential, Unrestricted Access

The ARMv7-M Instruction Set

ADR. The normal assembler syntax for this instruction can specify the label of an instruction or literal
data item whose address is to be calculated. Its encoding specifies a zero-extended immediate offset
that is either added to or subtracted from the ATign(PC,4) value of the instruction to form the address
of the data item, and some opcode bits that determine whether it is an addition or subtraction.

When the assembler calculates an offset of 0 for the normal syntax of this instruction, it must
assemble the encoding that adds 0 to the A1ign(PC,4) value of the instruction. The encoding that
subtracts 0 from the ATign(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for this instruction that specifies the addition or subtraction and the
immediate value explicitly, by writing them as additions ADD <Rd>,PC,#<imm> or subtractions

SUB <Rd>,PC, #<imm>. This alternative syntax makes it possible to assemble the encoding that subtracts
0 from th