
Transactional Memory
Memory semantics in support of parallelism

Herlihy and Moss, ISCA 93
Transactional Memory: Architectural Support for Lock-Free Data
Structures

Problems
Shared memory needs concurrency control

Locking is simple, but has serious issues

Priority inversion (preempted low priority process holds lock needed by high
priority process)

Convoying (process holding lock is swapped out)

Deadlock (mutual exclusion through multiple locks)

Locks are atomic, but activites within them are not

Transactions
Goal is to let user create custom atomic operations

Finite sequence of instructions (in a single process)

Serializable: logically ordered and don’t interleave

Atomicity: All changes appear at once

Upon completion it either commits or aborts

Despite what the paper says, nested transactions are useful and are problematic

Memory Access Primitives
Load transactional (read shared mem to private reg)

Load trans exclusive (read with hint of future update)

Store transactional (local write, may be rolled back)

Read set is everything touched by LT

Write set is everything touched by LTX and ST

Data set is read and write sets

Transaction Operations

Commit: Try to make write set visible. Fails if anyone else has read the write
set or written the data set

Abort: Clears the write set

Validate: Tests whether the current transaction is active or aborted

Implementation

Short code sequences only please!

Works by modifying cache coherence protocol

Separate transactional cache, small, fully associative

Tags: Empty, Normal (committed data), XCommit (discard on Commit),
XAbort (discard on abort)

Also supports usual MSI protocol states

Evaluation

Simulation with a bus based coherence protocol and a directory-based
network protocol

Not validated for timing

Microbenchmarks (Counting, Producer/Consumer with shared FIFO buffer,
Doubly Linked List)

Single active transaction per processor (32 nodes)

TTS: Spin lock, MCS: software queueing, LL/SC: Load-Linked/
Store Conditional, QOSB: Hardware queueing, Trans. Mem.

Discussion

Nakalke ISCA 2015
Quantitative Comparison of Hardware Transactional Memory for
Blue Gene/Q, zEnterprise EC12, Intel Core, and Power 8

22 Years Later...

Software TM has been tried

Hardware TM support on four systems

STAMP benchmarks test transaction performance

Conflict Detection Granularity

When cache lines are tagged (as in the original proposal) they can contain
values from different transactions, causing false conflicts

Cache lines have grown (64 to 256 bytes)

Note that these are not using a separate cache

Transaction Capacity
Maximum data a transaction can access

Space for conflict detection, uncommitted writes

Blue Gene: 20MB load, 20MB store (1.25 MB/core)

zEC12: 1MB load, 8KB store

Core i7: 4MB load, 22KB store

Power 8: 8K load, 8 KB store
What happened to the idea that transactions are small?

Transaction Retry

On transaction abort, can retry

Nothing to prevent infinite retries

Fall back to a global lock to force an irrevocable transaction to take place

Ensures a transaction completes

Forces others to wait

STAMP Benchmarks
Badly coded

Many false conflicts

Many unnecessary aborts

Hardware TM support doesn’t help

Fixed problems and created own version

Only report speedup, not absolute speed

System Configurations

16-core 1.6-GHz A2 with 4 SMT threads (Blue Gene/Q), V1R2M2, 16 GB RAM

16-core 5.5-GHz zEC12, z/OS V2.01, 64 GB RAM

4-core 3.4-GHz Core i7-4770 with 2 SMT threads, Linux 3.14.5, 4 GB RAM

6-core 4.1-GHz POWER8 with 8 SMT threads, AIX 7.1.3.16, 28.5 GB RAM

Speedup Ratio (1 thread)

Core i7

Prefetching looks for access patterns and loads cache lines

Doesn’t distinguish prefetch from transaction accesses

Results in extra aborts

Disabling reduces aborts from 16% and 24% on kmeans benchmarks to
10%

Speedup (4 threads)

Selected benchmarks, limited speedup

Speedup (More threads)

Conclusions

No clear winner

Scaling isn’t consistent

Different processors scale on different benchmarks

In some cases, scaling limited by transaction capacity

In others by abort rates

Recommendations

Make conflict detection more precise (reduce false positives)

Make it easier for HTM to gracefully scale to using software TM

Enable tagging non-transaction accesses to avoid false conflicts

Increase transactional store capacity

Discussion

