
Theory vs. Practice
Until it’s in hardware, you’re just kidding yourself

Kung Factors

H.T. Kung, then of CMU, after building two generations of the Warp systolic
array, concluded that simulations are always optimistic. He went on to list the
many factors contributing to loss of theoretical performance when an
architecture transitions to hardware implementation. These are remembered in
the community, not so much for their specifics, but in general terms, as the
Kung Factors. Those who have built hardware know them well. Those who
have not are usually deluding themselves.

Today we look at two academic projects that took on the Kung Factors.

Anant Agarwal ISCA 2004
Evaluation of the Raw Microprocessor

The Early Vision (1995)
From Michael Taylor M.S. Thesis (1999)

Fabric of FPGAs

FPGA’s support synchronization of parallel elements

Best for bit and byte values

In contrast, processors are optimized for datapath

Processors deal well with cold code (90%)

Compiling hardware is unacceptably slow

A New Vision

Each Tile

32-bit MIPS ISA

32 KB I-mem, 32 KB D-mem

FIFO queue register interface to switch processor

Each Switch

Simplified processor with data movement capability

8K instruction I-mem

Small set of registers

Moves are from ports to registers

Chip Process
160 nm 6-metal CMOS

Up to 24m gates, but far fewer due to wires

Scale back total area to 16m to be safe

For 16 tiles, 1m gates per tile available

Dedicate half to SRAM (32k words) and half to CPU

But Kung Factor says fewer will be usable

BotE Floorplan for a Tile

Two Networks

Static -- configured at compile time, sends individual words with no header
overhead

Initially assumed programmed I/O where compiled code assumed cycle
counts between tiles would be identical

Due to IF statement variability and cache misses, needed to add
handshaking and FIFO buffers

Explored multiple alternatives to switch processor

Two Networks

Static network has to be configured and managed

Dynamic -- for sending messages that control the setup of the static
network, interrupts, I/O, sync, etc.

Wormhole routed, packet-based router

Interface is similar to static, but different scheduler

Processor Design

MIPS R2000, expanded to 6 stages to
accommodate floating point

Static network ports mapped to registers
24 & 25

Switch Interlock Complication
Because switch interface is in
registers, data goes to switch
early in pipe

But this may be wrong for an
exception

Can deadlock switch, so need to
ensure data has enough buffer
space to allow a pipe restart

Floating Point

Subset of IEEE 754, only in 32-bit

Needs to interface to static network with same timing

Adds a stage to the main pipe

Configurable Logic?

Few applications beyond basic parallelism

Hard to implement in ASIC

Messes up pipeline and network timing

Need a lot of it to do anything interesting

Greatly complicates software support

No!

I/O Via Networks
Simple interface to each port to allow chips to talk

At edges, connect to FPGA translators, to enable communication with other
devices

Scales with chip pin count

Doesn’t scale linearly with processor count, but OK for modest numbers of
processor chips

Unfortunately, not enough pins even for baseline chip

Predicted Performance

Assuming pinout problem can be solved

Assuming memory interface can be
worked out

Assuming unlimited SRAM available

Assuming simulator within 10% of
hardware

Five Years Later...
Double the number of networks

2 static nets, each with 32k program memory

2 dynamic nets, one for memory, the other for user messaging

Pinout growth hasn’t dodged the prior I/O problem

Expected 1124/1657 signal pins, but got 1080

Expected 290 MHz clock, got 425 MHz (simulated)

Prototype Design
Note changes in pipelines, register assignments

Off chip ports

Compared to a Carefully Chosen
Equivalent P-III

Note that results are still from simulation

Predictions vs. Estimates
Tomcatv: 9.91

Cholesky: 10.30

Mxm: 12.20

Vpenta: 10.59

SHA: 1.44

Unstructured: 5.34

Single Core

Parallel nodes usually suffer a
slowdown

Fewer resources per core, but
more cores

Stream and Dense Matrix Performance
vs. P-III

Discussion

Mark Gebhart	 ASPLOS 09
An Evaluation of the TRIPS Computer System

TRIPS Concept

Dataflow meets control flow

Block Oriented

Programs partitioned into blocks

Single entry point

No internal loops

Potentially multiple exits

Interrupts are block-precise

2003 Projections
4 16-wide cores

Array of 32KB memory tiles on a routed network

Distributed memory controllers

100 nm process, with 2005 target date

Polymorphous -- supporting multiple operation modes

Some elements fixed, some variable or can be disabled

Polymorphous Resources

Frames: Reservation stations with same index

Register banks: More than in the ISA spec

Block sequencing: Can be chained, etc., for modes

Memory tiles: Can be L2 NUCA cache or specialized

Morphs: Desktop

High Instruction Level Parallelism

Large distributed issue window

Hyperblocks encoded VLIW style

Memory is NUCA cache

Morphs: Thread Parallel
Similar to SMT

Statically partitions reservation stations

Eliminates reorder buffer

Frames are partitioned in advance; assigned to threads

Multiple PCs are provided

Cache must avoid cross-thread accesses

Morphs: Streaming

Fuses frames into a super frame

Blocks are recycled in reservation stations

Imagine-like stream register file

Six Years Later...

TRIPS is an EDGE (Explicit Data Graph Execution) ISA

Block atomic dataflow

170M transistor ASIC at 366 MHz, 30 W

Die Photo

Notice how instruction and data
caches are on the same side now

Two processors rather than four

All memory in one area

Comparison

Proc/Mem Ratio is speed of processor vs. memory

Dynamic Instructions

IPC

In a Perfect World...

If Clocked at Same Rate as Core-2,
Using gcc

Lessons

Need operand broadcast

Instruction block header overhead too high

Need to map so instruction to instruction communication stays on the same
tile

Need predicate prediction

Better memory distribution

Future?

Even if clock matches modern processors, speedup will still be a small
factor

Benefits not enough to warrant a radical shift in ISA

Limitations for supporting code not in C or Fortran (e.g., object-oriented,
functional)

Discussion

