
Methodology

Lizy John, 2007 ISCA

Similar programs in benchmark suites don’t add info

Need to statistically analyze benchmarks

Begin by using PAPI to log dynamic instruction counts

SPEC Int Characteristics

SPEC FP Characteristics

Comparison

Higher rate of branches in integer codes

20% on average vs. 5%

Slightly lower load rate but similar store rate vs. FP

Instruction Locality

Use PIN to measure fraction of dynamic (executed) instructions in top N
hottest subroutines

Plot against static instructions

If a high fraction of dynamic instructions are covered by a small fraction of
the static instructions, then the code has good locality

Good locality may also imply that the data set doesn’t exercise a large
portion of the application

SPEC Int Instruction Locality

bzip, mcf, hmmer, libquantum, astar have high locality

SPEC FP Instruction Locality

namd, cactus, zeusmp, gromacs, calculix, soplex1,
tonto, gamess3, gamess1 high in locality

Other Gross Characteristics

Data Source and Processing

Six performance counter metrics X five machines = 30 variables

Obtained from vendors under NDA

Need to eliminate redundant info

Principle Component Analysis identifies most significant factors

Discard those that do not contribute much info

Clustering

Hierarchical clustering groups two items with most similar characteristics

Recomputes distances for new cluster

Repeats until there is just one cluster

Produces a dendrogram -- tree indicating similarity relationships

SPEC Int Dendrogram

SpecFP Dendrogram

For a Given Cluster

Calculate distance from center

Choose benchmark closest to center

Fewer clusters reduces work, but may lump together too many
benchmarks and reduce overall variance

This analysis just shows best distribution within the set but doesn’t tell
whether the set is representative

Suggested Subsets

Validation

Pick some SPEC reports

Use figures for individual benchmarks to compare subsets to entire set

Errors for 4 Int programs average 5.8%

Errors for 8 FP programs average 7%

SPEC Int Validation

SPEC FP Validation

Data Set Variation

Can be greater than program variation

Need to analyze PCA clustering by data set

SPEC Int Data Set Clusters

Branch Prediction Clustering

Data Access Clustering

Data Access Clustering

Further Analysis

The EDA programs are replaced by others with similar coverage

The 2006 benchmarks have more diversity than 2000

Some of the applications from the same area are redundant, but others are
not

Some are very sensitive to architecture, while others (like gcc) are not

Discussion

Yang ISCA 2015
Computer Performance Microscopy with SHIM

Performance Measurement

Enables deeper optimization of code

Can lead to new compiler optimizations

Can provide insights for architects, OS designers

Enables comparison of systems

Performance Counters
Designed for engineering studies

Limited set of hardware-oriented events

Fewer counters than event types - multiple passes

Not always accurate, can overflow

Privileged, requires OS access overhead

Different on each model, not well documented

Software Monitoring
Replace instructions with calls to logging functions

Very flexible in level of event granularity and type

Disrupts instruction flow

Significant overhead (increased time, memory)

Significant observer effect (disturbed behavior)

No access to hardware and other asynchronous events

SHIM - Pros
Runs in separate thread or on separate core

Software event signals monitor thread

Reduces overhead and observer effect

Reads both software and hardware events

Operates at high frequency, sampling short periods

Constant overhead/effects can be accounted for

SHIM - Cons
Still disrupts hardware state, up to 61% overhead

Fine grained data cannot be fully validated

Runs in Java JIT environment

Needs lengthy runs to reach stability

Automatic GC limits ability to fine tune

Java isn’t a language of choice for high performance

Not clear how it works with highly parallel code

Sample Rate

Coarse sampling blurs some effects

Reducing Noise

Overlapping sample periods helps identify disrupted
behaviors, when measurements are inconsistent

Effects of Overlapping

Eliminates most bad signal values,
but at fine grained rates, over 50% are bad

Randomness

Randomizing good samples is claimed to reduce
errors related to periodicity

Observer Effect

Overhead Core vs. SMT

Example: Garbage Collection

Memory bound task

Discussion

