
Methodology



Lizy John, 2007 ISCA

Similar programs in benchmark suites don’t add info  

Need to statistically analyze benchmarks 

Begin by using PAPI to log dynamic instruction counts



SPEC Int Characteristics



SPEC FP Characteristics



Comparison

Higher rate of branches in integer codes 

20% on average vs. 5% 

Slightly lower load rate but similar store rate vs. FP



Instruction Locality

Use PIN to measure fraction of dynamic (executed) instructions in top N 
hottest subroutines 

Plot against static instructions 

If a high fraction of dynamic instructions are covered by a small fraction of 
the static instructions, then the code has good locality 

Good locality may also imply that the data set doesn’t exercise a large 
portion of the application



SPEC Int Instruction Locality

bzip, mcf, hmmer, libquantum, astar have high locality



SPEC FP Instruction Locality

namd, cactus, zeusmp, gromacs, calculix, soplex1, 
tonto, gamess3, gamess1 high in locality



Other Gross Characteristics



Data Source and Processing

Six performance counter metrics X five machines = 30 variables 

Obtained from vendors under NDA 

Need to eliminate redundant info 

Principle Component Analysis identifies most significant factors 

Discard those that do not contribute much info



Clustering

Hierarchical clustering groups two items with most similar characteristics 

Recomputes distances for new cluster 

Repeats until there is just one cluster 

Produces a dendrogram -- tree indicating similarity relationships



SPEC Int Dendrogram



SpecFP Dendrogram



For a Given Cluster

Calculate distance from center 

Choose benchmark closest to center 

Fewer clusters reduces work, but may lump together too many 
benchmarks and reduce overall variance 

This analysis just shows best distribution within the set but doesn’t tell 
whether the set is representative



Suggested Subsets



Validation

Pick some SPEC reports 

Use figures for individual benchmarks to compare subsets to entire set 

Errors for 4 Int programs average 5.8% 

Errors for 8 FP programs average 7%



SPEC Int Validation



SPEC FP Validation



Data Set Variation

Can be greater than program variation 

Need to analyze PCA clustering by data set



SPEC Int Data Set Clusters



Branch Prediction Clustering



Data Access Clustering



Data Access Clustering



Further Analysis

The EDA programs are replaced by others with similar coverage 

The 2006 benchmarks have more diversity than 2000 

Some of the applications from the same area are redundant, but others are 
not 

Some are very sensitive to architecture, while others (like gcc) are not



Discussion



Yang ISCA 2015
Computer Performance Microscopy with SHIM



Performance Measurement

Enables deeper optimization of code 

Can lead to new compiler optimizations 

Can provide insights for architects, OS designers 

Enables comparison of systems



Performance Counters
Designed for engineering studies 

Limited set of hardware-oriented events 

Fewer counters than event types - multiple passes 

Not always accurate, can overflow 

Privileged, requires OS access overhead 

Different on each model, not well documented



Software Monitoring
Replace instructions with calls to logging functions 

Very flexible in level of event granularity and type 

Disrupts instruction flow 

Significant overhead (increased time, memory) 

Significant observer effect (disturbed behavior) 

No access to hardware and other asynchronous events



SHIM - Pros
Runs in separate thread or on separate core 

Software event signals monitor thread 

Reduces overhead and observer effect 

Reads both software and hardware events 

Operates at high frequency, sampling short periods 

Constant overhead/effects can be accounted for



SHIM - Cons
Still disrupts hardware state, up to 61% overhead 

Fine grained data cannot be fully validated 

Runs in Java JIT environment 

Needs lengthy runs to reach stability 

Automatic GC limits ability to fine tune 

Java isn’t a language of choice for high performance 

Not clear how it works with highly parallel code



Sample Rate

Coarse sampling blurs some effects



Reducing Noise

Overlapping sample periods helps identify disrupted 
behaviors, when measurements are inconsistent



Effects of Overlapping 

Eliminates most bad signal values,  
but at fine grained rates, over 50% are bad



Randomness

Randomizing good samples is claimed to reduce  
errors related to periodicity



Observer Effect



Overhead Core vs. SMT



Example: Garbage Collection

Memory bound task



Discussion


