
Benchmarking
How to Lie with Statistics*

*Darrell Huff, How to Lie with Statistics, Norton, New York, 1954

The only reliable way to measure performance is by
running actual applications on real hardware.

If we want to compare performance
across different contexts, this implies

use of a benchmark.

Standard Performance Evaluation
Corporation

http://www.spec.org/
Many benchmarks, most commonly CPU
CPU2006 / 2000 / 95 / 92
[published results]
Choice of integer or floating point
Each is a suite (12 integer, 17 floating point)
C, C++, Fortran, statically compiled & linked

http://www.spec.org

SPEC CINT 2006
Benchmark Brief Description

400.perlbench Based on Perl V5.8.7. The workload includes SpamAssassin, MHonArc email
indexer, and specdiff

401.bzip2 Julian Seward's bzip2 version 1.0.3, modified to work in memory
403.gcc gcc V 3.2 targeting an AMD Opteron
429.mcf Network simplex public transport scheduler
445.gobmk Plays the game of Go
456.hmmer Protein sequence analysis using profile hidden Markov models
458.sjeng Chess program that also plays several variants
462.libquantum Simulates a quantum computer
464.h264ref H.264/AVC video compression
471.omnetpp OMNet++ discrete event simulator modeling an Ethernet network
473.astar Pathfinding library for 2D maps, including A* search
483.xalancbmk A modified version of Xalan-C++, for transforming XML

http://www.spec.org/cpu2006/Docs/400.perlbench.html
http://www.spec.org/cpu2006/Docs/401.bzip2.html
http://www.spec.org/cpu2006/Docs/403.gcc.html
http://www.spec.org/cpu2006/Docs/429.mcf.html
http://www.spec.org/cpu2006/Docs/445.gobmk.html
http://www.spec.org/cpu2006/Docs/456.hmmer.html
http://www.spec.org/cpu2006/Docs/458.sjeng.html
http://www.spec.org/cpu2006/Docs/462.libquantum.html
http://www.spec.org/cpu2006/Docs/464.h264ref.html
http://www.spec.org/cpu2006/Docs/471.omnetpp.html
http://www.spec.org/cpu2006/Docs/473.astar.html
http://www.spec.org/cpu2006/Docs/483.xalancbmk.html

SPEC CFP2006 Part 1
Benchmark Brief Description
410.bwaves 3D transonic viscous flow
416.gamess Quantum chemistry
433.milc Lattice gauge field generator
434.zeusmp Astrophysics CFD (computational fluid dynamics)
435.gromacs Molecular dynamics
436.cactusAD
M Einstein equation solver

437.leslie3d Large eddy CFD
444.namd Biology molecular dynamics

SPEC CFP2006 Part 2
Benchmark Brief Description
447.dealll Finite element analysis
450.soplex Simplex linear algorithm
453.povray Ray tracing
454.calculix Structural analysis
459.GemsFDTD Solves 3D Maxwell equations
465.tonto Quantum chemistry w/ OO Fortran
470.lbm Lattice Boltzmann fluid flow simulation
481.wrf Weather model
482.sphinx3 Speech recognition

SPEC History

H&P Fig. 1.16
Note how few

persist for
multiple

generations

Typical CINT Summary
Company and model

Dates

Typical CINT Summary
What they quote in marketing material

Typical CINT Summary
What naive people think is more realistic

What’s the difference?

Base Rules

1. No naming benchmarks or routines
2. No library substitution
3. No feedback-directed optimizations
4. Only safe optimizations
5. Same optimizations for all
6. No assertions to guide optimization

Base vs Peak

Base sounds more realistic

Peak is “no holds barred, anything goes”

So why is it naive to think base is more meaningful?

Need to look deeper

Individual Results

Run each benchmark three times, divide each run
by a reference time (so higher score is better), use
median values to compute summary average of

ratios. Sounds reasonable...

Graphically

What’s up
with this?

Note how many are
below the “average”

How to Average?

The usual way (arithmetic mean)

The SPEC way (geometric mean)

Both are sensitive to outliers

A little effort to improve one benchmark yields a much better average overall

Another Average

When averaging ratios, harmonic mean yields a value proportional to the total

Short-running applications have less influence on total time

Harmonic mean is less sensitive to outliers

Example

Using Harmonic Mean

24.6
21.2

Now half are
above mean

Omitting the Outlier

23.0
20.0

About 12%
difference

How Common is This?

Are any Different?

How About SPEC FP?

So?

If they all do it, aren’t the numbers
meaningful in a relative sense?

So?
Consider this example:

23.6 25.0

So?
How does deleting the outlier and using the harmonic mean change the results?

20.3 19.8

23.6 25.0

“Benchmark Engineering”

There are obvious ways to enhance performance using the SPEC CPU
peak rules:

Profile directed feedback
Special libraries
Unsafe optimizations
Different optimization options
Assertions to guide optimization

What else can you think of?

“Benchmark Engineering”
Single user/diagnostic mode
Strip-down kernel to minimum services
Disable network interface, user I/O
Lengthen OS quantum
Hand pick processor board and memory
Use fastest disk (15K RPM or SSD)
Reformat disk with longer sectors
Make compiler recognize benchmarks
Turn off multithreading
Specially cool processor chip

“Benchmark Engineering”

Commercial benchmarks report
results that you are guaranteed
never to exceed (or even match)

Amdahl’s Law

Gene Amdahl

Architect for IBM 709, Stretch, 360

Left IBM to form his own company, building IBM mainframe “clones”

Observed that speeding up one aspect of an architecture has limited value

Amdahl’s Law

Overall Speedup =

1/((1-Percent affected)+ Percent affected/Speedup)

Even if X% of a processor’s performance is improved infinitely, only X
amount is removed from the total

The remaining 1-X% dominates

If 99% disappears, 1% remains, so at most 100X speedup

Desikan

Validation of software simulation of architecture

Compares real Alpha to simulations

Identifies sources of error with microbenchmarks

Shows results with macrobenchmarks

Simulator Error

Simulator Error

Discussion

Hill CAECW 2002

Commercial workloads are different

Big memory and disk

Nondeterminism

Benchmarks run for hours

OLTP

Database benchmark

Reduce size

Zero think time

Super-fast disk

10K transaction warm-up (real machine), 1K run (sim)

SPECjbb

Transaction processing in Java

1.8GB heap to minimize GC

500MB data per warehouse

100K warmup, 100K run

Apache

10 SURGE clients per processor

Zero think time

2K file repository with 50 MB

80K warmup, 2.5K run

Slashcode

Dynamic web page generation

3K messages, 5 MB total

240 transactions warmup, 50 run

Barnes-Hut

N-body Simulation

Numerical benchmark for comparison

64K bodies

The Workload

Variation

Discussion

