
Parashar ISCA ‘17
SCNN: An Accelerator for Compressed-sparse Convolutional
Neural Networks

Convolutional Neural Nets

Series of layers, generate output activations (OA) becoming input
activations (IA) to next layer

Convolution (1x1, 3x3, 5x5 filters with trained weights)

Non-linear scalar operator (e.g., ReLU, clamping negatives to 0)

Downsample

Can use separate systems for training and inference (focus on latter)

Seven Dimensions

Plenty of opportunity for parallelism

Sparsity
Zeros in a layer’s weight and input
activation matrices — generate 0s out

ReLU produces many zeros

Exploiting Sparsity
Compressing data

Reduces data movement, and thus saves energy

More efficient use of memory, allowing larger networks

Reducing computation

Less time (zeros don’t have to be multiplied, fewer multipliers)

Saves energy for fixed problem size or enables larger problems

Energy is important for inference in deployed mobile applications

General Dataflow
Different ways to get the computations done, which data has to move

Input stationary (IS) keeps the input activation (C) plane fixed in memory

K filters are applied over inputs to give K output channels. N groups of input
channels can be passed to the filters

Results in an N -> K -> C loop nest

Within that nest is the WxH element output, followed by the RxS reduction
and scaling filters

PT-IS-CP Dataflow

Break output channels into blocks that can be reused (K/KC)

Weights buffer volume: C x KC x R x S

Inputs buffer volume: C x W x H

Partial sums volume: KC x W x H

Results in reordered loop nest: K/KC -> C -> W -> H -> KC -> R -> S

Cartesian Product (CP)

Vector of F filter weights multiplied by vector of I inputs

F weights are multicast to all I activations

With compressed representation, all multiplies will be useful

Accumulation unit as F x I adders

Planar Tiles

Scaling to multiple processors

Divide each layer into tiles, Wt x Ht

All of input activation layer C goes to each tile

Outputs generate halos that extend beyond tiles

Halos get transmitted to adjacent processors for summing

Processor Arrangement

Compression Representation

Index vector is #non-0s, then #0s before each data vector entry

Processor Architecture

Where not to compress

The adders need to generate spatially mapped outputs

The multiplier outputs are sent via index array to adders so that outputs at
the same location can be summed

Adders can be aliased, so there are extra (2x) to reduce that

Once the sums are produced, they are reduced and scaled and can then
be compressed again

Issues

Fully connected layers are hard to handle with compression, but are rare

Large models may not fit, and have to be swapped out to RAM (called
temporal tiling)

CNN designers may rework their nets to fit for mobile applications

Overall Parameters
64 processors, total of 7.9 mm2

1024 multipliers (16 per processor)

2MB of SRAM

Developed with CAD tools to full layout and circuit simulation

Validated cycle-level simulator and separate analytical tool

Also designed dense version, and energy-optimized dense version for
comparison, and optimal (oracle) version

Sparsity Sensitivity Analysis

Performance

Multiplier Utilization
• Later layers can have small

working sets, so multipliers go
idle

• Tiles can have unbalanced
loads, so some wait for others
to finish

Energy Efficiency

Surprise that DNN-Opt
does so well

Effect of Density

Discussion

Fowers ISCA18
A Configurable Cloud-Scale DNN Processor for Real-Time AI

Microsoft’s FPGA-based NN Processor

Single or small batch sizes for inference on individual transactions

Low latency - user-facing applications

Network resident as a resource in a datacenter

SIMD with extensive pipelining

Co-processor, but with large granularity instructions for millions of ops

Placement in a Datacenter

LSTM Analysis

This kind of analysis motivates the design to use an explicit chaining
instruction set that sets up a dataflow-like vector path

Instruction Set

A chain begins with a read input and ends with a write output

Architecture

The SIMD Part

SIMD Issue is Hard

Uses a hierarchy of schedulers and decoders to distribute control

Performance Compared to GPU

Note that this is comparing 32-bit IEEE floating point
to an 8-bit custom floating point format

Utilization Comparison

ResNet50 2D Classifier Benchmark

Batch Size Scaling

Discussion

