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Convolutional Neural Nets

Series of layers, generate output activations (OA) becoming input 
activations (IA) to next layer 

Convolution (1x1, 3x3, 5x5 filters with trained weights) 

Non-linear scalar operator (e.g., ReLU, clamping negatives to 0) 

Downsample 

Can use separate systems for training and inference (focus on latter)



Seven Dimensions

Plenty of opportunity for parallelism



Sparsity
Zeros in a layer’s weight and input 
activation matrices — generate 0s out 

ReLU produces many zeros



Exploiting Sparsity
Compressing data 

Reduces data movement, and thus saves energy 

More efficient use of memory, allowing larger networks 

Reducing computation 

Less time (zeros don’t have to be multiplied, fewer multipliers) 

Saves energy for fixed problem size or enables larger problems 

Energy is important for inference in deployed mobile applications



General Dataflow
Different ways to get the computations done, which data has to move 

Input stationary (IS) keeps the input activation (C) plane fixed in memory 

K filters are applied over inputs to give K output channels. N groups of input 
channels can be passed to the filters 

Results in an N -> K -> C loop nest 

Within that nest is the WxH element output, followed by the RxS reduction 
and scaling filters



PT-IS-CP Dataflow

Break output channels into blocks that can be reused (K/KC) 

Weights buffer volume: C x KC x R x S 

Inputs buffer volume: C x W x H 

Partial sums volume: KC x W x H 

Results in reordered loop nest: K/KC -> C -> W -> H -> KC -> R -> S



Cartesian Product (CP)

Vector of F filter weights multiplied by vector of I inputs 

F weights are multicast to all I activations 

With compressed representation, all multiplies will be useful 

Accumulation unit as F x I adders



Planar Tiles

Scaling to multiple processors 

Divide each layer into tiles, Wt x Ht 

All of input activation layer C goes to each tile 

Outputs generate halos that extend beyond tiles 

Halos get transmitted to adjacent processors for summing



Processor Arrangement



Compression Representation

Index vector is #non-0s, then #0s before each data vector entry



Processor Architecture



Where not to compress

The adders need to generate spatially mapped outputs 

The multiplier outputs are sent via index array to adders so that outputs at 
the same location can be summed  

Adders can be aliased, so there are extra (2x) to reduce that 

Once the sums are produced, they are reduced and scaled and can then 
be compressed again



Issues

Fully connected layers are hard to handle with compression, but are rare 

Large models may not fit, and have to be swapped out to RAM (called 
temporal tiling) 

CNN designers may rework their nets to fit for mobile applications



Overall Parameters
64 processors, total of 7.9 mm2  

1024 multipliers (16 per processor) 

2MB of SRAM 

Developed with CAD tools to full layout and circuit simulation 

Validated cycle-level simulator and separate analytical tool 

Also designed dense version, and energy-optimized dense version for 
comparison, and optimal (oracle) version



Sparsity Sensitivity Analysis



Performance



Multiplier Utilization
• Later layers can have small 

working sets, so multipliers go 
idle 

• Tiles can have unbalanced 
loads, so some wait for others 
to finish 



Energy Efficiency

Surprise that DNN-Opt 
does so well



Effect of Density



Discussion



Fowers ISCA18
A Configurable Cloud-Scale DNN Processor for Real-Time AI



Microsoft’s FPGA-based NN Processor

Single or small batch sizes for inference on individual transactions 

Low latency - user-facing applications 

Network resident as a resource in a datacenter 

SIMD with extensive pipelining  

Co-processor, but with large granularity instructions for millions of ops



Placement in a Datacenter



LSTM Analysis

This kind of analysis motivates the design to use an explicit chaining 
instruction set that sets up a dataflow-like vector path



Instruction Set

A chain begins with a read input and ends with a write output



Architecture



The SIMD Part



SIMD Issue is Hard

Uses a hierarchy of schedulers and decoders to distribute control



Performance Compared to GPU

Note that this is comparing 32-bit IEEE floating point  
to an 8-bit custom floating point format



Utilization Comparison



ResNet50 2D Classifier Benchmark



Batch Size Scaling



Discussion


