Parashar ISCA '17 SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks

Convolutional Neural Nets

- Series of layers, generate output activations (OA) becoming input activations (IA) to next layer
- Convolution (1x1, 3x3, 5x5 filters with trained weights)
- Non-linear scalar operator (e.g., ReLU, clamping negatives to 0)
- Downsample
- Can use separate systems for training and inference (focus on latter)

Figure 2: CNN computations and parameters.

Figure 3: 7-dimensional CNN loop nest.

Plenty of opportunity for parallelism

Exploiting Sparsity

- Compressing data
 - Reduces data movement, and thus saves energy
 - More efficient use of memory, allowing larger networks
- Reducing computation
 - Less time (zeros don't have to be multiplied, fewer multipliers)
 - Saves energy for fixed problem size or enables larger problems
- Energy is important for inference in deployed mobile applications

General Dataflow

- channels can be passed to the filters
- Results in an N -> K -> C loop nest
- and scaling filters

Different ways to get the computations done, which data has to move

Input stationary (IS) keeps the input activation (C) plane fixed in memory

K filters are applied over inputs to give K output channels. N groups of input

Within that nest is the WxH element output, followed by the RxS reduction

PT-IS-CP Dataflow

- Break output channels into blocks that can be reused (K/Kc)
- Weights buffer volume: C x K_c x R x S
- Inputs buffer volume: C x W x H
- Partial sums volume: K_C x W x H

Cartesian Product (CP)

- Vector of F filter weights multiplied by vector of I inputs
- F weights are multicast to all l activations
- With compressed representation, all multiplies will be useful
- Accumulation unit as F x I adders

Planar Tiles

- Scaling to multiple processors
- Divide each layer into tiles, Wt x Ht
- All of input activation layer C goes to each tile
- Outputs generate halos that extend beyond tiles
 - Halos get transmitted to adjacent processors for summing

Compression Representation

Processor Architecture

Figure 6: SCNN PE employing the PT-IS-CP-sparse dataflow.

Where not to compress

- The adders need to generate spatially mapped outputs
- the same location can be summed
- Adders can be aliased, so there are extra (2x) to reduce that
- be compressed again

The multiplier outputs are sent via index array to adders so that outputs at

Once the sums are produced, they are reduced and scaled and can then

ISSUES

- Fully connected layers are hard to handle with compression, but are rare
- temporal tiling)

Large models may not fit, and have to be swapped out to RAM (called

CNN designers may rework their nets to fit for mobile applications

Overall Parameters

- 64 processors, total of 7.9 mm²
- 1024 multipliers (16 per processor)
- 2MB of SRAM
- Developed with CAD tools to full layout and circuit simulation
- Validated cycle-level simulator and separate analytical tool
- Also designed dense version, and energy-optimized dense version for comparison, and optimal (oracle) version

Sparsity Sensitivity Analysis

Figure 8: GoogLeNet performance and energy versus density.

Performance

Multiplier Utilization

- Later layers can have small working sets, so multipliers go idle
- Tiles can have unbalanced loads, so some wait for others to finish

Figure 10: Average multiplier array utilization (left-axis) and the average fraction of time PEs are stalled on a global barrier (right-axis), set at the boundaries of output channel groups.

Energy Efficiency

Surprise that DNN-Opt does so well

(b) GoogLeNet

Figure 11: SCNN energy-efficiency comparison.

Effect of Density

Discussion

Fowers ISCA18 A Configurable Cloud-Scale DNN Processor for Real-Time Al

Nicrosoft's FPGA-based NN Processor

- Single or small batch sizes for inference on individual transactions
- Low latency user-facing applications
- Network resident as a resource in a datacenter
- SIMD with extensive pipelining

Co-processor, but with large granularity instructions for millions of ops

Placement in a Datacenter

Fig. 1. BW system at cloud scale. From left to right, servers with bump-in-the-wire accelerators, accelerators connected directly to the hyperscale datacenter network, an accelerator appliance.

LSTM Analysis

			L L
	Operations	Latency	
1	8N ² multiplies 8N N/2 add- reductions	4N ² / #FU _{MVM} * + log(N)	
2	4N adds	4N / #FU _{Add}	Ţ
3	4N adds	4N / #FU _{Add}	b _f → (+)
4	3N sigmoids N tanhs	3N / #FU _{Sigmoid} N / #FU _{Tanh}	Š,
5	2N multiplies	2N / #FU _{Hadamard}	
6	N adds	N / #FU _{Add}	
7	N tanhs	N / #FU _{Tanh}	
8	N multiplies	N / #FU _{Hadamard}	* FU _{MVM} = 1 mu

Fig. 2. LSTM critical-path analysis. Operation count and latency are shown as functions of LSTM dimension (N) and number of functional units (#FU).

Xt

This kind of analysis motivates the design to use an explicit chaining instruction set that sets up a dataflow-like vector path

Instruction Set

Name	Description	IN	Operand 1	Operand 2	OUT
v_rd	Vector read	-	MemID	Memory index	V
v_wr	Vector write	V	MemID	Memory index	-
m_rd	Matrix read	-	MemID (NetQ or DRAM only)	Memory index	M
m_wr	Matrix write	M	MemID (MatrixRf or DRAM only)	Memory index	-
mv_mul	Matrix-vector multiply	V	MatrixRf index	-	V
vv_add	PWV addition	V	AddSubVrf index	-	V
vv_a_sub_b	PWV subtraction, IN is minuend	V	AddSubVrf index	-	V
vv_b_sub_a	PWV subtraction, IN is subtrahend	V	AddSubVrf index	-	V
vv_max	PWV max	V	AddSubVrf index	-	V
vv_mul	Hadamard product	V	MultiplyVrf index	-	V
v_relu	PWV ReLU	V	-	-	V
v_sigm	PWV sigmoid	V	-	-	V
v_tanh	PWV hyperbolic tangent	V	-	-	V
s_wr	Write scalar control register	-	Scalar reg index	Scalar value	-
end_chain	End instruction chain	-	-	-	-

PWV = point-wise vector operation. IN = implicit input (V: vector, M: matrix, -: none). OUT = implicit output.

THE SINGLE-THREADED BW NPU ISA EXPOSES A COMPACT AND SIMPLE ABSTRACTION FOR TARGETING DNN MODELS.

TABLE II

A chain begins with a read input and ends with a write output

Architecture

Fig. 4. Matrix-vector multiplier overview.

. **4.** 101au

The SIMD Part

Fig. 5. Matrix-vector tile engine microarchitecture.

SIND Issue is Hard

Performance Compared to GPU

	Titan Xp	BW_S10
Numerical Type	Float32	BFP (1s.5e.2m)
Peak TFLOPS	12.1	48.0
TDP (W)	250	125
Process	TSMC 16nm	Intel 14nm

TABLE IV

Note that this is comparing 32-bit IE to an 8-bit custom floating po

2000	8000	20000	f_{\prime}			\mathbf{a}	\frown	Nir	A H
	0000	300000		ノク				9 1	
					600000				
	1		2						

Benchmark	Device	Latency (ms)	TFLOPS	%
	SDM	1.581	-	
GRU h=2816 t=750	BW	1.987	35.92	
	Titan Xp	178.60	0.40	
	SDM	0.661	-	
GRU h=2560 t=375	BW	0.993	29.69	
	Titan Xp	74.62	0.40	
	SDM	0.438	-	
GRU h=2048 t=375	BW	0.954	19.79	
	Titan Xp	51.59	0.37	
	SDM	0.266	-	
GRU h=1536 t=375	BW	0.951	11.17	
	Titan Xp	31.73	0.33	
	SDM	0.558	-	
GRU h=1024 t=1500	BW	3.792	4.98	
	Titan Xp	59.51	0.32	
	SDM	0.00017	-	
GRU h=512 t=1	BW	0.013	0.25	
	Titan Xp	0.06	0.05	
	SDM	0.037	-	
LSTM h=2048 t=25	BW	0.074	22.62	
	Titan Xp	5.27	0.32	
	SDM	0.043	-	
LSTM h=1536 t=50	BW	0.145	13.01	
	Titan Xp	6.20	0.30	
	SDM	0.011	-	
LSTM h=1024 t=25	BW	0.074	5.68	
	Titan Xp	1.87	0.22	
	SDM	0.0038	-	
LSTM h=512 t=25	BW	0.077	1.37	
	Titan Xp	1.26	0.08	
	SDM	0.0126	-	
LSTM h=256 t=150	BW	0.425	0.37	
	Titan Xp	1.99	0.08	

TABLE V DEEPBENCH RNN INFERENCE PERFORMANCE RESULTS

Julization - 74.8 3.3 - 61.8 3.3 - 41.2 3.0 - 23.3 2.8 - 10.4 2.6 - 10.4 2.6 - 0.5 0.4 - 10.5 0.4 - 10.4 2.6 - 0.5 0.4 - 11.8 1.9 - 2.8 0.7 - 0.8 0.7 -	
- 74.8 3.3 - 61.8 3.3 - 41.2 3.0 - 23.3 2.8 - 10.4 2.6 - 0.5 0.4 - 10.4 2.6 - 0.5 0.4 - 27.1 2.7 - 27.1 2.7 - 27.1 2.7 - 27.1 2.5 - 11.8 1.9 - 2.8 0.7 - 0.8 0.7	Itilization
- 61.8 3.3 - 41.2 3.0 - 23.3 2.8 - 10.4 2.6 - 0.5 0.4 - 47.1 2.7 - 27.1 2.7 - 27.1 2.7 - 27.1 2.7 - 11.8 1.9 - 2.8 0.7 - 0.8 0.7	- 74.8 3.3
- 41.2 3.0 - 23.3 2.8 - 10.4 2.6 - 0.5 0.4 - 47.1 2.7 - 47.1 2.7 - 27.1 2.7 - 27.1 2.7 - 27.1 2.5 - 11.8 1.9 - 2.8 0.7 - 0.8 0.7	- 61.8 3.3
- 23.3 2.8 - 10.4 2.6 - 0.5 0.4 - 47.1 2.7 - 27.1 2.5 - 11.8 1.9 - 2.8 0.7 - 0.8 0.7 - 0.8 0.7	41.2 3.0
- 10.4 2.6 - 0.5 0.4 - 47.1 2.7 - 27.1 2.5 - 11.8 1.9 - 2.8 0.7 - 0.8 0.7	23.3 2.8
- 0.5 0.4 - 47.1 2.7 - 27.1 2.5 - 11.8 1.9 - 2.8 0.7 - 0.8 0.7	- 10.4 2.6
- 47.1 2.7 - 27.1 2.5 - 11.8 1.9 - 2.8 0.7 - 0.8 0.7	0.5 0.4
- 27.1 2.5 - 11.8 1.9 - 2.8 0.7 - 0.8 0.7	- 47.1 2.7
- 11.8 1.9 - 2.8 0.7 - 0.8 0.7	- 27.1 2.5
- 2.8 0.7 - 0.8 0.7	- 11.8 1.9
- 0.8 0.7	- 2.8 0.7
	- 0.8 0.7

Utilization Comparison

ResNet50 2D Classifier Benchmark

THE BRAINWAVE NPU ON ARRIA 10 ACHIEVES COMPETITIVE THROUGHPUT AND LATENCY TO AN NVIDIA P40 GPU AT BATCH SIZE 1 ON A RESNET-50-BASED IMAGE FEATURIZER.

	Nvidia P40	BW_CNN_A10
Technology node	16nm TSMC	20nm TSMC
Framework	TF 1.5 + TensorRT 4	TF + BW
Precision	INT8	BFP (1s.5e.5m)
IPS (batch 1)	461	559
Latency (batch 1)	2.17 ms	1.8 ms

TABLE VI

Batch Size Scaling

Fig. 8. Utilization scaling with increasing batch sizes.

Discussion