Survey

Pipeline speedup Amdahl's law Branch predictor Victim buffer RISC Multicore SMT

Know well

Seen before

New

16	6
10	13
5	18
8	13
9	9
8	6
	13

What is Architecture? No longer a simple answer

Performance Growth History

Bandwidth vs. Latency

H&P Fig. 1-10

bandwidth improvement

Relative

bandwidth has been easier to scale up

Architecture as Architecture

Instruction Set Architecture

- Assembly language view
- Execution contract
- Abstraction hiding a microarchitecture
- Abstraction hiding an abstraction
- Very little room today for innovation
 - Backwards compatibility

Microarchitecture

- Implementation of the abstraction
- Architecture family concept (IBM 360)
- Designed to meet goals
- Targets future technology at start of design
 - Turning technology into a programmable computer

Performance Evaluation Methodology Do you know what you're really measuring?

Nethodology

- Computer science research is fast-moving Driven by annual conference publication deadlines
- Sometimes cuts corners in methodology
- Architecture is no exception, and perhaps more so
- Why?

Nature of the Beast

- Architecture simulations are expensive
- Run thousands to millions of times slower
- Need to run big benchmarks for realism, significance
- Hard to validate (you never really know until you build it)
- Affected by all software tools (top of the food chain)

Example

- Early cache research used traces of about a million instructions
- Stone showed results were not significant
- 200K references, <10% miss rate => <20K misses</p>
- Cache is still cold.
- Need 100 misses per line after warmup for significance

For 1K line cache, average 20 events each, many lines are not even filled.

Proper Size

- 64K line cache (4MB, 64B/line)
- 100 misses per line = 6,400,000 misses
- 1% miss rate = 640,000,000 references
- \mathbf{I} 1/5 of instructions = 3.2B instructions (bare minimum)
- x 10K slowdown = 3.2M sec at 1B IPS (~ 37 days)
- Obviously need to cut corners

Given locality differences, could be 320B instructions to get significance

Corners to Cut

Use partial runs Use subsets of benchmarks Use traces instead of full simulation Use a simplified environment (faster simulation) Prewarm the system

Diwan

Measurement bias in systems research Uses SPEC 2006 C subset, both int and FP Compares O2 and O3 optimization Varies two factors: Link order Unix environment variable space

Benchmarks Used

Suite	Benchmark
CINT	gcc libquantum perlbench bzip h264ref mcf gobmk hmmer sjeng
CFP	sphinx3 milc Ibm

Cycles	Seconds
3,142,640,332	1.3
7,690,324,238	3.2
12,752,930,486	5.3
13,840,302,589	5.8
46,785,473,888	19.5
59,250,579,566	25.0
180,491,870,344	75.2
246,974,548,791	102.9
419,892,937,630	175.0
35,238,100,682	14.7
57,414,647,507	23.9
232,213,767,693	96.8

Effect of Link Order

Width = #samples, dot = median, thick bar =interquartile range, + = default, X = alphabetical

Effect of Environment (Perlbench only)

Effect of Environment

Intel Compiler

Core 2 vs. Pentium 4 Best for one doesn't predict for other

Literature

ASPLOS, PACT, CGO, PLDI 88 of 133 include method (66%) Median reported speedup = 10%

Testing Diversity

7% variation for entire suite indicates that it is not diverse enough to eliminate bias

Figure 6. Distribution of speedup due to O3 as we change the experimental setup.

Setup Randomization (For variation in just 600 the two factors)

Frequency

Figure 7. Using setup randomization to determine the speedup of O3 for perlbench. At a 95% confidence interval, we estimate the speedup to be 1.007 ± 0.003 .

Discussion