
Bulck 2018
Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution

Meltdown in the Enclave

Intel’s secure enclave, SGX promises an isolated memory space

Can run code that is trusted, prevent indirect access of protected space

But it uses the processor core and cache hierarchy

Get it to run a job so it has data in cache

Beforehand, set up array of 256 slots at 4K intervals

Complex Setup

Revoke all permissions on enclave

Step through array to re-establish array slot TLB entries

Run out-of-order instructions to do an indirect access to the array using a
cached value as the pointer

Provide exception handler for page fault that does a timing scan of cache

Optimizations

Use page aliasing ro reduce effect of mprotect call

Hide exception handling in a transaction to suppress faults

Flush cache before enclave execution to make room

Repeatedly load the indirect location to keep it in cache

Pin victim enclave to a core to reduce interference

Preemptive Strike

Force enclave to exit early to ensure data stays in cache

Use advanced interrupts to single step the enclave

SGX stores it registers in a frame of a fixed SSA stack

Revoke execute permission to force a page fault, which causes a SSA
frame to refill, bringing it into the cache

Read out the register values

Root Adversary Read of SGX

Evict the a page from the enclave page cache then reload it

Reload copies the page in L1 and doesn’t evict it

Enables a root process to read enclave content without executing it

More Attacks

Can steal Launch Enclave keys

Can steal keys from Quoting Enclave

Discussion

Yan 17
Secure Hierarchy-Aware Cache Replacement Policy

Spy Process

Knows addresses of interest

Flushes them (or evicts through conflict)

Observes when they are reloaded

If addresses are dependent on data, then the data values can be recovered

Note that this is not like Meltdown or Specter

cflush and Inclusion Victims

Evicts from entire cache hierarchy including copies on other cores

Used e.g., to get output into DRAM for DMA access

Can flush pages shared with a victim process(e.g., a shared library)

Inclusive caches keep copies at all levels below highest residence

If a lower level has an eviction, then copies above need to be evicted

SHARP replacement
Prioritize eviction of non-private
lines

If none, look for a line private to
only one process

If none, increment an alarm count
and do a random evict

Interrupt if count exceeds a
threshold

Core Valid Bits

Exist for directory based shared memory management

May not be up to date — can give false positives for private lines

Can add a query mechanism to ask cores to update the CVB for a line

But that won’t scale with core count, so just query for the first N lines in a
set

Modify cflush

Shouldn’t have to flush read-only or executable pages

Change cflush to only work for writeable pages

Avoids flush on shared libraries, and cause an exception (need OS change)

 If a page is marked copy-on-write, then subsequent spy flushes will be to
its own copy

Discussion

