
Security
Chickens come home to roost 
(In no predictable order)

Out of Order Execution

Enables scheduling to hide latencies

Independent instructions launch ahead of others

If an earlier instruction causes an exception, they are squashed

Since the architectural registers aren’t changed, it’s like the instructions
never executed

What could possibly go wrong?

Cache Gone Wrong

Micro-architectures have a lot of non-ISA state

Caches, write buffers, MSHRs, victim buffers, branch predictors, TLBs…

Squashing merely abandons changes to that state

So if it’s not exposed to the ISA, why is that a problem?

Squashing is Sloppy
Once instructions are issued, they are on the fast path

Checks (cache tags, TLB hits, privilege levels, etc.) come later

They depend on lookups from other sources that take time to arrive

Violations will eventually get caught

If squashing happens, it makes checks “unnecessary”

Micro-state changes are left laying around like dirty laundry on the floor

Meltdown: Reading Kernel Memory
from User Space
Moritz Lipp, et. al.

Simple Example

Instruction that forces and exception but has a dependency

Independent instruction that accesses memory

The latter will issue first

The former will trigger squashing of the latter

But the memory access may have already started cache miss handling

Getting Tricky

Suppose the memory access uses a value outside of user space as an
indirect address

Privilege violation gets checked after TLB lookup

Squashing will happen first, so the violation is ignored

But the cache will load a line at an address corresponding to the value

That’s an invisible leakage of information from the other address space

Making the Invisible Visible

If a cache flush was forced before the exception, it’s empty…

Except for the line loaded as a result of the squashed instruction

Scanning cache while checking the response time finds that one fast line…

Whose address is the value of the data in the location used as the pointer

Why This is Bad
It’s not a software bug

It’s a hardware design feature

It bypasses all security

There is no easy hardware fix

OoO is a deeply integrated performance enhancement

Fixes either reduce performance or require major changes

Practicalities
Need to multiply data by page size to avoid prefetcher interference

Violation may still cause termination

So fork the access first, or set up a signal handler if allowed to catch it

Suppress the exception by hiding it in a transaction, or speculative code

Indirection by a full byte requires checking 256 lines

Indirection dependent on a single bit only requires checking one, which is less
faster and thus less susceptible to noise, although it takes more accesses

Kernel Address Space Layout
Randomization (KASLR)

Different machines map the kernel to different locations in virtual memory

Virtual memory is big (240 bytes)

But we only need to see one responsive location to find it

Scanning at intervals of the RAM size (e.g., 233) makes that feasible

Mitigation
Disable OoO — not practical

Check permissions earlier — would slow all memory access

Memoize and revoke changes — needs more storage

Hard partition of kernel/user memory space with an address bit

Issues with some kinds of virtualization (recursive, different guest OSes)

Limits physical memory to 512GB - shortsighted

KAISER
Traditionally, kernel space is mapped into user space but protected, to enable faster
access to OS services

KAISER maps the kernel outside of user space

Intel requires some kernel addresses to be in user space for e.g., interrupts need
pointers to service routines

Replace interrupt service calls with trampoline functions using a different
randomization offset to indirectly call services

Linux optimized version called Kernel Page Table Isolation (KPTI)

May still leave vulnerabilities

Discussion

Speculation

Given a branch prediction…

Start executing the predicted path

If it turns out to be a mispredict, squash the results in the pipeline

No architectural state is changed, so no problem

Sound familiar?

Training a Predictor

Repeat a branch with a consistent outcome

Trains the predictor and the branch target buffer

Recall that predictors suffer from branch aliasing

Exploiting the Predictor
Find a branch in the OS as part of a system call

Find a “gadget” in the OS that does an indirect load using a register that isn’t overwritten
before the branch in the system call (e.g., LDR R2, [R1], LDR R3, [R2])

Position a branch in user space at a location that aliases the OS branch

Train the BTB entry for that branch to jump to a location with the same user virtual
address as the gadget’s address in OS space

Load the register (e.g., R1) and make the system call

The system call speculatively branches to the gadget, which does the loading

Scan cache for the fast line, whose address is the value at the target location

Why this is Worse than Meltdown

Nothing exceptional happened — it’s all on the branch predictor

The OS did the dirty work inside its own address space (wherever that is)

There is no good way to protect against this

Why this is Not Worse

It requires detailed knowledge of the OS

It requires reverse engineering the branch predictor (the example was for a
simple, local history predictor)

It takes time to set up each attack — leakage is slow

The training pattern can be detected when run in an interpreter

But it could still be useful for high value data

Why this is Scary

The paradigm isn’t limited to cache

There are many variants that could leak, e.g., registers, patterns of
execution, etc., which could facilitate other attacks

Mitigation
Disable speculation — severe performance penalty

Browsers execute every page in a separate process

Unroll speculatively generated state

Keep privileged level indirect branches from using prior predictions

Flush the BTB on entry to the OS

Use special branches that avoid prediction

Discussion

