
Virtualization
Clothing the Wolf in Wool

Virtual Machines
Began in 1960s with IBM and MIT Project MAC

Also called “open shop” operating systems

Present user with the view of a bare machine

Execute most instructions directly, but trap operations that would reveal the fiction,
and emulate

Hot topic until Unix, then architectural support drops

Example of M68010

Advantages

Greater security -- more isolation of tasks

Ability to manage QoS for tasks

Easy to profile tasks

Can run multiple operating systems

Can test and debug new OS code directly

Disadvantages

More complex OS/VMM

Takes more resources than kernel OS

Requires hardware support

Can be slow if hardware support is weak

Gerald Popek CACM 1974
Formal Requirements for Virtualizable Third Generation
Architectures

Requirements

Equivalence: Virtual machine must look like bare HW (but smaller)

Resource control: All resources are virtualized and managed by the VMM

Efficiency: Has to be nearly as fast as running natively

Instruction Types

Privileged: Implies supervisor state with special instr.

Control sensitive: Changes processor mode, or memory map

Behavior sensitive: Behavior depends on mode or on location (anything that
can reveal state of other tasks)

A VMM requires that the sensitive instructions be a subset of the privileged
instructions

Recursive Virtualizability

If there is proper HW support, a VM can run recursively within itself

Allows nested operating systems, layers of control

Rarely supported

Paravirtualization

Can fake with JIT or direct binary translation (DBT)

XEN approach when no HW virtualization mode

Can’t be completely hidden from adversary

Sensitive, Non-privileged x86 Instructions
SGDT – Store Global Descriptor Table register

SIDT – Store Interrupt Descriptor Table register

SLDT – Store Local Descriptor Table register

SMSW – Store Machine Status Word

PUSHF(D) – Push EFLAGS register on stack (16 and 32-bit versions)

POPF(D) – Pop EFLAGS register from stack, with some privilege levels (16 and 32-
bit versions)

Sensitive, Non-privileged x86 Instructions
LAR – Load access rights into GP register

LSL – Load segment address limit into GP register

VERR – Verify if code/data segment is readable based on current protection level

VERW – Verify is code/data segment is writeable based on current protection level

POP – Can raise general protection exception depending on target register and
protection level

PUSH – Can push protection status onto the stack

Sensitive, Non-privileged x86 Instructions

CALL – Can call to same or a different privilege level, saving return info

JMP – Like CALL, but without saving return info

INT n – Like a far CALL to a different level, but also pushes EFLAGS on stack

RET – Can return between privilege levels

STR – Store segment selector (including privilege bits)

MOV – Can be used to load or store control register set

Virtualization Extensions
VT-x introduced 2005 by Intel

AMD-V introduced 2006 by AMD

AMD Rapid Virtualization Indexing (nested page tables) adds hardware to MMU

Intel adds Extended Page Tables

VT-D provides virtualization of directed I/O, trapping DMA, etc.

Typically not enabled in BIOS

VirtualBox claims to be faster without VT-x

Itanium Example

Trap to a higher level, setting violation status

Can only return to a lower level resetting status

Can’t forward the violation to a guest OS to handle

Beyond the ISA

Areas that are hard to virtualize
Complex virtual memory
I/O and network devices
Graphics, GPUs
Multithreading
Cache coherence
Multicore
TLB, branch predictor -- clever optimizations can backfire when they are
virtual

Dall ISCA16
ARM Virtualization: Performance and Architectural Implications

Hypervisor Types

KVM
Type 2 hypervisor

Integrates with Linux

Reuses existing device drivers

Higher cost to switch from VM to Host

Paravirtualizes I/O devices with Virtio

Has direct access to hardware resources

Xen
Type 1 hypervisor

Runs under multiple host operating systems

Has a privileged VM, Dom0, that runs an existing OS and funnels I/O
through its drivers (except for some basic operations), giving greater
isolation

Guest VMs known as DomU

Paravirtualizes I/O devices with Xen PV

ARM Virtualization Extension

Additional privilege level: EL2, for hypervisor

EL2 has three types of addresses: Virtual, Intermediate, Physical

Interrupt controller supports virtual interrupting of VMs

Physical interrupts go to EL2

VM can set timer, but it traps to EL2, which fires a virtual timer interrupt to the VM

State saving is flexible compared to x86 VMCS table

Xen on ARM

Runs hypervisor in EL2

VM kernel in EL1, VM users in EL0

Xen on ARM

KVM on ARM
Host OS can’t run in EL2

Runs host and VMs in EL1

Puts minimal hypervisor functionality in EL2

Reverts to EL1 host/hypervisor for rest

Enables virtualization only when in EL2, since host needs full hardware access

Hypervisor does more context switch state saving because host, hypervisor, and
VMs share EL1

Microbenchmarks

Hypervisor calls are expensive for KVM because of the
EL2 to EL1 transition. I/O is expensive on Xen because of

having to send it via the hypervisor to Dom0

Netperf Detail

Packet processing cost is high, especially for Xen, due to
a lack of zero-copy I/O (done for more isolation)

Virtualization Host Extension

Change EL2 so host OS can run in it

Provides equivalent registers (especially page table)

Instructions to access EL1 registers from EL2

Make EL2 page tables compatible with EL1

VHE for Type 2, not Type 1

Discussion

Parasar ISCA 18
SEESAW: Using Superpages to Improve VIPT Caches

Caches and Virtual Memory

Another option for TLB placement — beside L1D

Previously, and a Different Way
We looked at TLB above L1 (Physically indexed, physically tagged)

Or TLB below L1 (Virtually indexed, virtually tagged)

Can also use just a portion of the page offset as an index (virtual, but within
a page, so aligned) and access the TLB with the VPN to get a translation
that is compared to the physical address stored in the indexed line’s tag

As cache lines grow long, less of the page offset is available as an index
because more bits are taken for the line offset

If the index is limited, caches can only grow via higher associativity

Obvious Question

Why not just increase the page size, e.g., to 64KB?

That only gives 4 more bits of index (comparable to 16 ways of associativity)

Bigger would result in excessive waste of memory (RAM and disk) space

It would require a major OS rewrite

We already have superpages in the hardware and OS

More Ways Can be Worse
As we know, latency and power increase

Beyond 4 ways, hit rate isn’t significantly better, so performance loss isn’t hidden

Proposed System

Translation Filter Table

Results - 1.33 GHz

Results —
Faster Clock

Results — Energy

Discussion

