
Virtual Memory
Works best when you don’t need it



Historically

Motivated by expensive leased mainframes 

Large fraction of CPU time stalled on I/O 

A way to maximize utilization 

Supports multitasking and protection



Paging

Simple mapping 

Fixed-size units of memory (e.g., 4K) 

Page table indexed by virtual page number 

Returns physical page number 

Extended to support non-resident pages



Page Table is Simple Lookup

Resident VIrtual Page 
Number

Physical Page 
Number

YES

Virtual Page Number Offset

Physical Page Number Offset



Internal Fragmentation

Code and data don’t fit precisely into pages 

Left-over space is waste 

This was a big deal when machines had 64K 
(16 pages) of memory, in the 1960’s 

How can we scavenge that waste?



Segmentation

Make memory units variable in size 

More complex mapping 

Relocation pointer added to address, with result compared to an upper 
bound 

No internal fragmentation (for statically allocated applications)
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Next try to  
allocate 135

195 is available 
but not in one 

place



Compaction

195

Now there is 
enough space 
to allocate 135



Compaction

135



Compaction

Time consuming process 

Can cause noticeable pauses 

Many variations on incremental compaction 

Even without compaction, segment swap time can be long



Paged Segmentation

Break segments into pages 

Avoids external fragmentation 

Allows partial swapping of segments 

Another hierarchy of tables



Return to Paging

Fixed size avoids external fragmentation and compaction 

Matched well with traditional disk layout 

But as memory grew to GB, page tables became huge 

When page tables can’t be in cache, translations are very slow



Superpages

Have a small number of fixed page sizes instead of just one 

e.g., 4K and 2M 

Reduces page table size 

Increases complexity of management policy and mapping function



Hierarchical Tables
Rather than a flat page table, have multiple levels of tables 

Creates a tree-structured table (radix page table) 

Part of VPN selects entry in table that points to next table 

Next part of VPN selects entry in that table, etc. (Intel has 4 levels) 

Only need to fill in portions of the tree that are active 

Translation can take many accesses (four for non-virtualized accesses)



Larger Address Spaces

Page tables grow huge, or deep in hierarchy 

Many pages are not allocated -- sparse use of tables 

Can invert the tables  

Hash on virtual address to a PPN entry or a linked list of physical 
addresses with their virtual translations (collision chain) -- search list 

Works well if density is low



Larger Address Spaces

Page tables grow huge, or deep in hierarchy 

Many pages are not allocated -- sparse use of tables 

Can invert the tables 

Hash on virtual address to a linked list of physical addresses with their 
virtual translations -- search list 

Inverted tables tend to be large. Many variations.



Translation Lookaside Buffer
Speeding Virtual Memory Translations with a Small Fully Associative 
Cache



Simple Example

16-bit virtual and physical addresses 

Word addressing 

4K word pages 

16 virtual and physical pages 

TLB is 4-entry, fully associative, LRU
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Example
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TLB and Multiprocessing

TLB is augmented with a process tag 

Avoids need to purge TLB on context switch 

Shared data has its translation aliased and replicated



TLB Limitations

Full associativity is power hungry and slow 

TLB has to be small (e.g., 128 - 512 entries), often banked 

Works well with small working set, but poor for more dynamic sets (e.g., 
some garbage collected heap organizations) 

Has to interact with caches



Where to Translate?
Virtual to physical has to happen somewhere



Options
CPU  

Generates Virtual Address

L1 DataL1 Instruction

L2 Unified

L3 Unified

Main Memory  
Has to be Physical Here



Options
CPU  

Generates Virtual Address

L1 DataL1 Instruction

L2 Unified

L3 Unified

Main Memory  
Has to be Physical Here

All physical, requires fast translation



Options
CPU  

Generates Virtual Address

L1 DataL1 Instruction

L2 Unified

L3 Unified

Main Memory  
Has to be Physical Here

Less speed, introduces synonyms



Synonyms
Multiple processes can share physical addresses  

Each process has its own virtual address space 

A physical address can have multiple virtual addresses 

A virtual cache can end up holding copies of a value with different addresses 

If one of those values gets changed, the other copies must be invalidated 

Requires that highest physically-mapped cache has pointers to synonyms



Options
CPU  

Generates Virtual Address

L1 DataL1 Instruction

L2 Unified

L3 Unified

Main Memory  
Has to be Physical Here

More time (not needed), more synonyms



Options
CPU  

Generates Virtual Address

L1 DataL1 Instruction

L2 Unified

L3 Unified

Main Memory  
Has to be Physical Here

Change paradigm - synonym lookaside



Typical

Place translation and TLB between L1 and L2 

TLB can be larger (more effective), but more complex cache structures to 
resolve synonyms and handle invalidation 

Translate above L1 

Avoids synonyms, but TLB must be smaller to be faster (less effective) 

Synonyms are less common than translations



Typical

Place translation and TLB between L1 and L2 

TLB can be larger (more effective), but more complex cache structures to 
resolve synonyms 

Translate above L1 

Avoids synonyms, but TLB must be smaller to be faster (less effective) 

Synonyms are less common than translations....but....
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Coherence Traffic
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All Physical Caches

With enough shared memory cores, synonym handling can produce 
significant overhead 

Some parallel applications have few synonyms, and sometimes OS 
scheduling can avoid high traffic through placement 

But for applications like databases, it is better to avoid them 

Requires very fast translation and sophisticated but fast TLB above L1



Michel Dubois   IEEE TC 08
The Synonym Lookaside Buffer: A Solution to the Synonym 
Problem in Virtual Caches



(Almost) Never Translate

As number of cores and amount of sharing increases, more time is spent 
resolving synonyms 

But TLB is on the fast path 

So stay virtual, and explicitly resolve synonyms (SLB) 

Scales with actual sharing, rather than address space



A Closer Look At Synonyms
Multiple virtual addresses mapped to same physical 

Only one per page 

Must be at same address in different pages 

Used for sharing kernel, libraries, data, etc. 

Supports copy on write, to avoid duplicating read-only pages until one owner 
makes a change 

Allows message passing by remapping buffers



Virtual L1 Physical L2 Cache
Miss in L1 that hits in L2 

and indicates a 
synonym -- L2 

backpointer points to  
place in L1, and causes 

a short miss (internal 
copy) with L2 update



Multicore

TLBs in different cores contain duplicate entries 

Copies can be inconsistent, need to be shot down 

Complicated by variable-size superpages



Virtual L1 and L2

TLB accessed only on L2 miss 

Could be moved even lower



Synonym Lookaside Buffer

One per core, checked in parallel with L1 access 

Primary virtual address acts like physical address 

Secondary addresses translated to primaries 

SLB is like TLB, but maps secondary to primary VAs 

L1 and lower levels are tagged with primary addresses



SLB Organization



SLB Operation
SLB hits only for secondary addresses -> primary 

SLB miss checks L1 cache in parallel 

L1 hit gets primary, L1 miss signals secondary 

Address goes to L2 -- hit there is primary, and backpointer causes short miss 

L2 miss checks lower levels 

Hits above TLB are primary, so no SLB change 

TLB resolves synonyms, may trigger SLB update



SLB Actions

TLB shootdown avoided because caches above TLB 
are all virtual. Remapping of virtual pages causes  
overhead, especially if remapping primary page



An All Virtual Memory

Each page gets a unique ID (primary virtual address) 

Synonyms have secondary virtual addresses 

Page tables  need to keep track 

Allocate primary on first touch, except for specific cases (e.g., first allocation 
is temporary for initialization)



TLB vs. SLB misses



SLB Size

Most hits are captured with just 16 entries



TLB / SLB Misses by Size

Fixed data set size



L1 Miss Rate Ovals indicate difference  
traced to conflict misses



Discussion



Park, ISCA16
Efficient Synonym Filtering and Scalable Delayed Translation for 
Hybrid Virtual Caching



System Overview



Sharing is Rare



Hybrid Cache

S tag indicates physical (synonym) or  
virtual (non-synonym)



Operation
Synonym filter is checked 

Non-synonyms access L1 cache by virtual address 

A miss at L1 can result in a translation via a TLB 

Filter and cache can be accessed simultaneously 

Synonym candidates trigger TLB lookup 

If found, L1 is accessed by physical address 

If non-synonym, L1 virtual address is used 

If a miss, translation is done



Synonym Filter



Effect on TLB



Application Variation

Applications with heavy sharing don’t benefit



Fewer Segments than Pages

Misses Per Kilo-Instructions



Many-Segment Architecture



Extended Segment Table

Caches part of the OS’s B-Tree for Indexes



Index Cache Size Study



Performance

Using MARSSx86 and DRAMSim2



Power



Discussion



Yaniv - Sigmetrics 16
Hash, Don’t Cache (the Page Table)



Overview
Prior work claimed that Radix Page Tables with Page Walk Caches 
outperform Hashed Page Tables 

That model was based on the Itanium hashing scheme, which was 
suboptimal 

An optimized hashing scheme can give better performance 

The difference grows with virtualization 

Radix tables won’t scale as well as hashing in the future



Radix Page Table Structure

CR3 points to top level table

9-bit portions of VPN each select a table entry

Each table entry points  
to the next table in the tree



Virtualization Creates a 2D Table

The guest OS has to walk its table

Each step of the guest  
walk causes a host walk

Costs 24 memory accesses



Cache the walk
Use the lowest level cached walk portion available 

Apply caching in two dimensions 

If lucky, then most of walk is avoided



Other Radix Benefits

Entries are grouped so spatially local translations are effectively prefetched 

The indexing scheme is very simple 

The tables are compact



Hashing Itanium Style

VPN hashes into table 

Assumes a collision 

Points to chain table



Hashing with Open Addressing
Assume collisions are rare 

Just go to next slot 

Search until empty slot found 

Avoids chain tables 

Reduces PTE size



More Optimizations
• Reorganize to cluster entries 

• Achieves locality advantage 
• Scavenge bit from entries to form 

shared tag, enabling twice as many 
entries



Greatly Reduces 2D Walks
• Guest and host benefit from different 

clustering factors 
• Need to minimize number of pages 

for guest table 
• Increase clustering to reduce cache 

footprint



Performance
• Works well for TLB intensive 

workloads 
• Marginal effectiveness for low 

stress workloads 
• Never worse for these tests 
• Simulation based on traces 

and timing estimates 
• No use of parallel workloads



Discussion


