
Fine-Grained Multithreading
Filling Pipes with Instructions from Alternate Sources

Superscalar Issue Example

Multiple pipelines with different functions

Issue instructions as available from prefetch

8 pipes of depth 10

To keep example simple, assume no stalls

34 slots filled/80 available = 42.5% utilization

Simple Multithreading

Prefetch two threads at once

Simplest source is user and supervisor

Issue from thread with most ready ops

Do not issue from stalled thread

Assume the red L/S stalls 4 cycles

40 slots filled/80 available = 50% utilization
(even with the extra overhead of a stall)

Notes
Could have issued from both threads

Likely that dependences in stalled thread would limit forward progress

Some of boost in utilization was due to the second thread having a better
schedule

System threads rarely have FP ops

Assumed no other hazards

Real situation likely to have lower utilization

Cost of Multithreading
Separate register bank(s) needed for each thread, including PC, PSW, etc.

Switching logic to select register bank (and register update unit stations)

Extra prefetch queue and logic per thread, more complex scheduling

Thread tags for instructions in pipelines (more complex commit)

Causes functional units to run hotter

OS must manage threads

Simultaneous Multithreading

Issue the maximum mix of ready ops from the two threads

Requires analyzing a larger set of pending ops

58 slots filled/80 available = 72.5% utilization

Notes
Original thread is still not done

Higher throughput, lower per-thread rate

More pressure on all units

Memory busy on most cycles

Branch predictor complications

Exception handling more complex

Tullsen ISCA 1995
Simultaneous Multithreading: Maximizing On-Chip Parallelism

SMT Introduced

Multithreading originated at least in early CDC machines (early 60s) for I/O
latency hiding

Exploited in fine-grained way for computation in HEP

Further developed in Tera

SMT adds ability to go beyond switching threads on each cycle, and blend
thread on each cycle

Models

Single issue per thread per cycle

Dual, quad, full issue per thread per cycle

Limited range of connections between thread pipes and functional units

Compared with fine-grained multithreading

Results

Results

Compared to Multicore

Discussion

Mahlke ISCA 1995
A Comparison of Full and Partial Predicated Execution Support for
ILP Processors

Predication

Added operand that specifies predicate for execution of an instruction

If satisfied, instruction completes, otherwise squashed

Full predication adds capability to all instructions

Partial supports some (e.g., conditional moves)

Depends on speculation

Implementation

Set of predicate registers

Predicate define instructions

Instructions refer to defined predicates

Similar to Itanium

Different from ARM-32, where each instruction can conditionally set a
condition, and be predicated on existing conditions (ARM-64 more limited)

Compilation

Uses hyperblocks (connected series of basic blocks) with single entry,
multiple exit

Control flow between blocks eliminated by if-conversion

Create fully predicated code, then transform to partially predicated code

Significant code expansion (roughly double)

Then peephole optimize

Simple 8-issue Model

2-Branch Speculation

Simple 4-issue Model

Realistic Caches

Effect on Instruction Count

Effect on Rest of Branches

BRanches, MisPredicts, MisPredict Rate

Discussion

