
Prefetching
Getting ahead of the cache miss curve

Prefetch

Accesses often follow simple patterns

If the pattern can be identified, lines can be fetched before they are actually
needed, avoiding misses

Danger of fetching too soon -- may be evicted

Can evict useful data and force additional misses

Can generate excessive memory traffic

Wang ISCA 2003
Guided Region Prefetching: A Cooperative Hardware/Software
Approach

L2 Cache Prefetch

RAM access time more costly than L1 or L2

L2 has more idle time, allowing more costly prefetch

Longer lines carry more information to work from

L2 to RAM prefetch in a multiprocessor can impede shared memory access

Scheduled Region Prefetch
Aggressive prefetch of 4KB blocks on L2 miss

Prefetch engine queues prefetch requests

Prioritizer prevents interference with L2 misses

More recent requests take priority

Prefetch replaces LRU block

Increases memory traffic by 180%

Guided Region Prefetch

Add pointer prefetching: assume any value that falls within the address range
of the heap is a pointer and prefetch that address if not already in cache

Recursively prefetch “pointer” values found within a prefetched line to a depth
of six

Constrain size of prefetch using loop bounds info

Use compiler hints to improve accuracy and reduce number of generated
prefetches

Compiler Hints

Spatial: tags a load as likely to need spatial prefetch (leaves many loads untagged)

Size: indicates range to prefetch

Indirect: assume miss location is part of an index array and prefetch using the
line’s values as indexes

Pointer: the miss is getting data in a structure that contains pointers, so use those
to prefetch

Recursive pointer: the miss is part of a pointer chain

Results: Number of Hints

Results: Pointer Prefetch

Comparison: Stride, SRP

Stride prefetcher has more expensive hardware

Same, but for FP

Bandwidth Effect

Discussion

Jain 18
Rethinking Belady’s Algorithm to Accommodate Prefetching

Belady’s Algorithm (MIN)

Originally for OS page replacement

Peer into the future

Replace page that will not be used for the longest time

Because page mapping is fully associative, there is no specification for what
to do when there are multiple lines that are no longer needed

Obviously not practical

Terminology
Demand — the processor requests a location

Demand miss — the request misses, Demand hit — the request hits

Prefetch — a separate predictor tries to anticipate a demand

Accurate prefetch — one that is demanded before eviction

Shadowed — a prefetch followed by another without a demand between

Prefetch friendly — a successful prefetch following a demand

Dead — a demand load followed by an inaccurate prefetch

Basic Idea

Optimizing demand misses ignores effect of prefetch

Change policy to first evict the line that will be prefetched furthest in the
future, then fall back to evicting the line with a demand request furthest in
the future

Prefetches can be inaccurate, and they can come too early

The idea is to evict things that will be prefetched later to make more room
for demand fetches

Example

Evict A because it is demanded
furthest ahead

Evict B because it is going to be
prefetched again anyway

Line Usage Intervals

Avoids wasting space on prefetches that aren’t needed or will recur

Demand-MIN

Still requires an oracle

Produces a schedule that minimizes demand misses with prefetch

However, it can produce more memory traffic because it evicts more
prefetched values which then need to be prefetched again

Examples

Need Something Adjustable

Flex-MIN — Evict the line that is prefetched furthest in the future and is not
protected, otherwise fall back to MIN

Protected lines — At the beginning of *-P intervals, and if evicted would
increase traffic with little improvement in demand hit rate

Example: Evicting a long chain of short-duration prefetched values to keep
a demand value in cache, vs. evicting a smaller number of long-duration
prefetched values

Hawkeye cache

Learns behaviors of references based on PC value

Approximates Optimal by looking for next reuse, later reuses are better
eviction candidates, which would have been what OPT would predict

Associate the learned prediction with the PC value

Claim it can be implemented efficiently (it hasn’t been implemented)

2K 5-bit counters per core

Harmony
Changes Hawkey to learn from Flex-MIN instead of MIN

Distinquishes between *-P and *-D intervals

Only allows *-P caching if length is less than a threshold (keep the short
duration prefetches to avoid extra memory traffic)

Threshold is ratio of D-D intervals tha this to *-P intervals that are cache
friendly (Lines Evicted Per Demand Hit or LED)

Keeps four counters for Demand Miss and cache-friendly *-P statistics

Methodology

Champ-SIM

Trace-based, 6-wide OoO, RoB, 3-levels cache, reasonably sophisticated
memory simulation, perceptron branch predictor, not validated

L1 uses next-line prefetch (49% accurate), L2 uses stride prefetch (63%)

Use SimPoint to select traces, at least 1B instructions with 200M warmup

Configuration

1B instructions won’t give statistical significance on 2MB LLC accesses

Results

Results for more cores

Harmony Variants WRT LRU

But it won a contest!

Discussion

