
Cache Operation
Exercise to explore different organizations

Teams Each Take One Organization
Same trace for all — we have already seen 2-way set associative

Direct mapped, 4-way set associative, fully associative

Direct plus vitim buffer, 4-way plus victim buffer

Note type of hit/miss

H = hit, C = compulsory miss, X = conflict miss, V = victim hit

Reminder that conflict miss happens when a line was in cache previously

Results
Hit Compulsory Conflict Victim Hit Total Hits

Direct 16 22 2 - 16

2-way SA 16 22 2 - 16

4-way SA 16 22 2 - 16

Fully Assoc 18 22 0 - 18

Direct + VB 16 22 1 1 17

4-way + VB 17 22 0 1 18

Pipelined Execution
A Basic Form of Instruction Level Parallelism

Basic Idea

Every instruction goes through fetch-execute

We can fetch the next instruction while executing the current one

Fetch

Next IR

Current IR

Execute

Fetch

Next IR

Current IR

Execute

➀

Fetch

Next IR

Current IR

Execute

➀

➀

Fetch

Next IR

Current IR

Execute

➀

➁

Fetch

Next IR

Current IR

Execute

➀

➀

➁

➁

Fetch

Next IR

Current IR

Execute

➁

➂

Fetch

Next IR

Current IR

Execute

➁

➁

➂

➂

Fetch

Next IR

Current IR

Execute

➂

➃

Fetch

Next IR

Current IR

Execute

➂

➂

➃

➃

Fetch

Next IR

Current IR

Execute

➃

➄

Fetch

Next IR

Current IR

Execute

➃

➃

➄

➄

Fetch

Next IR

Current IR

Execute

➄

➅

Fetch

Next IR

Current IR

Execute

➄

➄

➅

➅

Notice that after the pipe is full there are always two instructions active at
once

Each stage does half the work of the fetch-execute cycle

We can clock the logic twice as fast because less work needs to be done in
each stage

A dual register (next/current IR) is needed between the stages to hold the
output of the first and the input of the second

Not shown: Control Unit splits into Fetch Control and Execute Control

Fetch Control doesn’t depend on IR contents

Execute Control drives execution based on the instruction in the IR

2X speedup is good!

Only had to add a register and rearrange existing logic, so cost is low

Can we do more?

Recall that Fetch/Execute had more than just two steps for most
instructions. What are they?

Fetch

Decode / Register Operand Fetch

Execute ALU Operation

Memory Access

Write (result) Back to Registers

Classic Pipeline

F D E M W

Let’s run a series of five instructions through this pipeline

Keep a count of the number of cycles this takes

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

How many cycles did it take to execute these five instructions?

Execution is complete in Write Back

How many cycles did it take to execute these five instructions?

Execution is complete in Write Back

So 9 cycles

How many will it take to execute ten?

Let’s see...

F D E M W

1

F D E M W

2

F D E M W

3

F D E M W

4

F D E M W

5

F D E M W

6

F D E M W

7

F D E M W

8

F D E M W

9

F D E M W

10

F D E M W

11

F D E M W

12

F D E M W

13

F D E M W

14

F D E M W

So 14 cycles for 10 instructions

How many cycles will it take to execute N instructions in this five-stage
pipe?

Keep in mind that the cycle time can be roughly five times faster than for a
non-pipelined fetch-execute processor

In the non-pipelined processor, instructions take different numbers of cycles
to execute

With a pipeline, every instruction goes through every stage, but may do
nothing in some stages

Assuming the average non-pipelined instruction takes 1 cycle of 2 ns, what
is the speedup for executing 20 instructions in a five-stage pipeline where
the clock cycle is 0.4 ns?

Speedup = Old time / New time

Old time = 20 instructions * 2 ns = 40 ns

New time = (5 fill cycles + 19 additional) * 0.4 ns = 9.6 ns

Speedup = 40 / 9.6 = 4.17

As the number of instructions increases, the speedup asymptotically
approaches the ratio of the clock speeds (2 / 0.4 = 5)

Note that our simulation only counts cycles, but by only allowing one
instruction to pass through the pipe at a time, you get an approximation

How many cycles will it take to execute N instructions in an M-stage pipe?

Why don’t we build pipes that are arbitrarily long?

