
Instruction Set Specification
Defining the programming contract

Where we are

Instructions defined abstractly

Grouped into types

Types are assigned values

Next step is designing instruction formats

Assign codes for operations

Field type: Instruction type

Usually fixed in position for all types

Makes decoding easier

Typically 2 to 4 bits (4 to 16 types)

Can have a type that indicates additional bits specify a sub-type

Example: 3-bit type, value 7 indicates next 2 bits extend the type

Field type: Opcode

Often starts in same position for all types, but may differ in length

Example: Many more ALU ops than branch ops

Typically 3 to 6 bits

May have values that indicate additional bits extend the opcode (typically
used when type field is small)

Field type: Register addr
log2(R) bits, where R= # registers

One field per operand

Not every instruction type needs 3 fields

Two or one address architectures use fewer

Some operations may have 4 fields

Need not be adjacent

Field type: Immediate

Made up of “left-over” bits

Size may vary with format

Usually sign extended by operations

Other Fields

Condition (may be in branch only, or predicate for all)

Set/Don’t set condition (a la Arm)

Shift amount (how many positions)

“Micro-op” formatting

Endianness

Byte order within a word

Given value 0x12345678, what order should the bytes (12, 34, 56, 78)
appear in a word?

12 is high order, 78 is low order

Endianness

If you say:

Byte address: 0 1 2 3
Value: 12 34 56 78

Then you are in favor of Little-endian addressing
(low order byte comes at the end)

Endianness

If you say:

Byte address: 0 1 2 3
Value: 78 56 34 12

Then you are in favor of Big-endian addressing
(high order byte comes at the end)

What About Strings?

Given ASCII string (8-bit subset of Unicode): “ABCD”

Normal placement is first character in low-order byte,
last character in high-order byte

What About Strings?

Given ASCII string (8-bit subset of Unicode): “ABCD”

Byte address: 0 1 2 3
Value: D C B A

so all of you “Little-endians” end up with:

First character, ‘A’, is in low order byte,
last character, ‘D’, is in high order byte

Little endian byte address 3 holds the low-order byte,

What About Strings?

Given ASCII string (8-bit subset of Unicode): “ABCD”

Byte address: 0 1 2 3
Value: A B C D

so “Big-endians” end up with:
Big endian byte address 0 holds the low-order byte,

First character, ‘A’, is in low order byte,
last character, ‘D’, is in high order byte

Does Endianness Matter?

Within an architecture, it’s just a matter of wiring, and everything is
consistent

Transferring files between systems of different endianness complicates data
sharing

Modes

Endianness can be modal

Can have alternate instruction set modes

Typical modes are security levels

User/Supervisor, additional levels for VM, etc.

Interrupts

Asynchronously cause jump to handler

Usually a low area of memory contains a table of jumps

Interrupt type N jumps to Nth element of jump table, causing jump to
handler (saves PC in separate return register)

Need to be able to turn off

Often supported by supervisor mode

Virtual Memory

Generally requires supervisor mode

Privileged instructions to manage memory map

Defines virtual to physical address mapping

Can be paged, segmented, combination, or a hierarchy

Not required for simulator project

Microarchitecture Ops

Sometimes need to interact with aspects of the microarchitecture

Typically need ability to force cache lines to flush to memory for I/O

May have branch hints for predictor warm-up

May have privileged instructions for managing other cached state (TLB,
branch predictor)

Arm Architecture
Example Embedded RISC Processor

ARM Organization

Register File
16 32-bit regsAddress Reg

Buffer reg

Inc
Sign Ext

Inc Shift

ALU MAC

IR

CU

Memory

R15 (PC)

Arm Registers
32-bits each

R0 - R12 General Purpose

R13 Stack Pointer

R14 Link Register (subroutine return)

R15 Program Counter

CPSR Status Register

Condition codes, overflow, etc.

ARM Data Types

8, 16, 32, 64-bit integers (depending on model)

Floating point and vector supported by some versions

Can be big endian or little endian, as set by user

ARM Instruction Formats
Bits 31-28: Condition Code

Bits 27-25: Instruction type

Types 000 - 001:

Bits 24-21: Opcode

Bit 20: Condition code update flag

Bits 19-16: Source register 1

Bits 15-12: Destination register

Type 000
Bits 6-5: Shift type

Bits 3-0: Source register 2

Immediate Shift Subset (Bit 4 = 0)

Bits 11-7: Shift amount

Register Shift Subset (Bit 4 = 1)

Bits 11-8: Register with shift count

Bit 7 = 0

Other Types

001: Data processing with immediate operand (7-0) and rotate(11-8)

010: Load/store with immediate offset

011: Load/store with register offset

100: Load/store multiple

101: Branch or branch with link

Formats

More Formats

Condition Codes

DP Instructions

ARM Manual

Available on 335 course page:

Arm v7 Reference Manual

https://people.cs.umass.edu/~weems/homepage/courses/
cmpsci-335.html

https://people.cs.umass.edu/~weems/homepage/courses/cmpsci-335.html

Team Homework

For Wednesday 2/13, complete ISA description, including register set
description

Include format diagrams, encodings

Explain all instructions, esp. load/store, branch

Use ARM manual as guide for descriptions

This is the draft of your ISA report

Teamwork
Remember to work as a team!

VLSI Technology
Fabrication and Structures

Chip Die Photo (P6)

Another Chip (Cell)

Dual-Core (Penryn)

Quad-Core (Nehalem)

Six-core Gulftown

Six-core i7(Sandy Bridge)

Quad-Core Haswell w/GPU

IBM Power 8 with 12 cores

300mm Wafer

Fabrication Begins

99.9999999% pure Silicon, purified from old sand

Slowly draw a single crystal boule (ingot) out of a melt, starting from a seed

Silicon Boules

Turn into Wafers

Lathe to a cylinder, machine flat or notch on one side
Slice with inside diameter diamond saw, or parallel wire saw
Polish, clean, and overcoat

Processing Cycle
Deposit a material
Deposit a UV-sensitive photoresist
Expose through a quartz/chrome mask
Wash away unwanted resist
Acid etch material into pattern
Repeat many times (35 masks, 700 steps)

Typical Pattern

After More Steps

Highly simplified layout

Doesn’t show wells, guard rings,
multiple metal layers, etc.

Cross Section
(NMOS transistor -- 1 = on)

N-well PMOS Transistor
(0 = on)

Multiple Wire Layers

Even with polishing, surface is uneven
Higher layers must be thicker, and wires
wider to be reliable. Reduces wiring
density.
Insulates heat-generating regions
Up to 7 layers (4 in memory)

Bare Die Testing

Optical inspection for defects

Micro-probe tester contacts test pads,
powers chip and runs test sequence

Probes wear out, must be replaced

Bad die are marked as rejects

Packaging

Solder-ball or wire bonding

Multi-level wiring in package

Bare chip for heat sink contact in some cases

Packaged Chip Testing

Initial test (some fail in bonding)

Performance grading test

Power and thermal cycle tests

Vibration tests (for some)

Packages with bad chips recycled

Newer technologies

Intel Tri-gate
(in production)

Fin-FET

VLSI Cost Model
Estimating Cost of Chips and Systems for a
Given Technology

Two Kinds of Cost

Non-recurring (NRE)

Recurring

Nonrecurring Cost

Chip design ($800M),
Plant capitalization ($8B),
Mask set ($1.5M)

Recurring Cost

Recurring: Manufacturing, packaging and testing, marketing, distribution,
warranty, research, overhead, legal

We will focus on manufacture, package, & test

Packaged Chip Cost

Costpackage and Yieldfinal are given

Other terms are computed

Cost of Chip

Costwafer is the cost of the finished wafer. Typically around $6000 to $8000

Other terms are calculated

Chips Per Wafer

Square peg in a round hole formula

Chips per wafer less ones at edge

Chips Per Wafer

Square peg in a round hole formula

Chips per wafer less ones at edge

Die Yield

Fraction of good die. Depends on process.

Defectsunit-area and Yieldwafer are given

P is a process complexity factor

Die Yield

Fraction of good die. Depends on process.

Defectsunit-area and Yieldwafer are given

P is a process complexity factor

Test Cost

Testers are expensive to operate

Cost must be amortized over good chips

Cost Practice
Costwafer = $7000
Diameterwafer = 300mm
Areachip = 13.5 X 19.6 mm
Defectsunit-area= 0.5 per cm2

Yieldwafer = 0.999
Yieldfinal = 0.97
P = 4.3
Costhour = $1000
Timetest = 10 seconds
TestSiteswafer = 0
Package Cost = $12

