
Instruction Set Specification
Defining the programming contract



Where we are

Instructions defined abstractly 

Grouped into types 

Types are assigned values 

Next step is designing instruction formats 

Assign codes for operations



Field type: Instruction type

Usually fixed in position for all types 

Makes decoding easier 

Typically 2 to 4 bits (4 to 16 types) 

Can have a type that indicates additional bits specify a sub-type 

Example: 3-bit type, value 7 indicates next 2 bits extend the type



Field type: Opcode

Often starts in same position for all types, but may differ in length 

Example: Many more ALU ops than branch ops 

Typically 3 to 6 bits 

May have values that indicate additional bits extend the opcode (typically 
used when type field is small)



Field type: Register addr
log2(R) bits, where R= # registers 

One field per operand 

Not every instruction type needs 3 fields 

Two or one address architectures use fewer 

Some operations may have 4 fields 

Need not be adjacent



Field type: Immediate

Made up of “left-over” bits 

Size may vary with format 

Usually sign extended by operations



Other Fields

Condition (may be in branch only, or predicate for all) 

Set/Don’t set condition (a la Arm) 

Shift amount (how many positions) 

“Micro-op” formatting



Endianness

Byte order within a word 

Given value 0x12345678, what order should the bytes (12, 34, 56, 78) 
appear in a word?  

12 is high order, 78 is low order



Endianness

If you say:

Byte address:   0    1    2    3  
Value:             12  34  56  78

Then you are in favor of Little-endian addressing 
(low order byte comes at the end)



Endianness

If you say:

Byte address:   0    1    2    3  
Value:             78  56  34  12

Then you are in favor of Big-endian addressing 
(high order byte comes at the end)



What About Strings?

Given ASCII string (8-bit subset of Unicode):  “ABCD”

Normal placement is first character in low-order byte,  
last character in high-order byte



What About Strings?

Given ASCII string (8-bit subset of Unicode):  “ABCD”

Byte address:    0   1    2    3  
Value:                D   C   B    A

so all of you “Little-endians” end up with:

First character,  ‘A’, is in low order byte,  
last character, ‘D’, is in high order byte

Little endian byte address 3 holds the low-order byte, 



What About Strings?

Given ASCII string (8-bit subset of Unicode):  “ABCD”

Byte address:    0   1    2    3  
Value:                A   B   C    D

so “Big-endians” end up with:
Big endian byte address 0 holds the low-order byte, 

First character,  ‘A’, is in low order byte,  
last character, ‘D’, is in high order byte



Does Endianness Matter?

Within an architecture, it’s just a matter of wiring, and everything is 
consistent 

Transferring files between systems of different endianness complicates data 
sharing



Modes

Endianness can be modal 

Can have alternate instruction set modes 

Typical modes are security levels 

User/Supervisor, additional levels for VM, etc.



Interrupts

Asynchronously cause jump to handler 

Usually a low area of memory contains a table of jumps 

Interrupt type N jumps to Nth element of jump table, causing jump to 
handler (saves PC in separate return register) 

Need to be able to turn off 

Often supported by supervisor mode



Virtual Memory

Generally requires supervisor mode 

Privileged instructions to manage memory map 

Defines virtual to physical address mapping 

Can be paged, segmented, combination, or a hierarchy 

Not required for simulator project



Microarchitecture Ops

Sometimes need to interact with aspects of the microarchitecture 

Typically need ability to force cache lines to flush to memory for I/O 

May have branch hints for predictor warm-up 

May have privileged instructions for managing other cached state (TLB, 
branch predictor)



Arm Architecture
Example Embedded RISC Processor



ARM Organization

Register File 
16 32-bit regsAddress Reg

Buffer reg

Inc
Sign Ext

Inc Shift

ALU MAC

IR

CU

Memory

R15 (PC)



Arm Registers
32-bits each 

R0 - R12 General Purpose 

R13 Stack Pointer 

R14 Link Register (subroutine return) 

R15 Program Counter 

CPSR Status Register  

Condition codes, overflow, etc.



ARM Data Types

8, 16, 32, 64-bit integers (depending on model) 

Floating point and vector supported by some versions 

Can be big endian or little endian, as set by user



ARM Instruction Formats
Bits 31-28: Condition Code 

Bits 27-25: Instruction type 

Types 000 - 001: 

Bits 24-21: Opcode 

Bit 20: Condition code update flag 

Bits 19-16: Source register 1 

Bits 15-12: Destination register



Type 000
Bits 6-5: Shift type 

Bits 3-0: Source register 2 

Immediate Shift Subset (Bit 4 = 0) 

Bits 11-7: Shift amount 

Register Shift Subset (Bit 4 = 1) 

Bits 11-8: Register with shift count 

Bit 7 = 0



Other Types

001: Data processing with immediate operand (7-0) and rotate(11-8) 

010: Load/store with immediate offset 

011: Load/store with register offset 

100: Load/store multiple 

101: Branch or branch with link



Formats



More Formats



Condition Codes



DP Instructions



ARM Manual

Available on 335 course page: 

Arm v7 Reference Manual 

https://people.cs.umass.edu/~weems/homepage/courses/
cmpsci-335.html

https://people.cs.umass.edu/~weems/homepage/courses/cmpsci-335.html


Team Homework

For Wednesday 2/13, complete ISA description, including register set 
description 

Include format diagrams, encodings 

Explain all instructions, esp. load/store, branch 

Use ARM manual as guide for descriptions 

This is the draft of your ISA report



Teamwork 
Remember to work as a team!



VLSI Technology
Fabrication and Structures



Chip Die Photo (P6)



Another Chip (Cell)



Dual-Core (Penryn)



Quad-Core (Nehalem)



Six-core Gulftown



Six-core i7(Sandy Bridge)



Quad-Core Haswell w/GPU



IBM Power 8 with 12 cores



300mm Wafer



Fabrication Begins

99.9999999% pure Silicon, purified from old sand 

Slowly draw a single crystal boule (ingot) out of a melt, starting from a seed



Silicon Boules



Turn into Wafers

Lathe to a cylinder, machine flat or notch on one side 
Slice with inside diameter diamond saw, or parallel wire saw 
Polish, clean, and overcoat



Processing Cycle
Deposit a material 
Deposit a UV-sensitive photoresist 
Expose through a quartz/chrome mask 
Wash away unwanted resist 
Acid etch material into pattern 
Repeat many times (35 masks, 700 steps)



Typical Pattern



After More Steps

Highly simplified layout 

Doesn’t show wells, guard rings, 
multiple metal layers, etc.



Cross Section 
(NMOS transistor -- 1 = on)



N-well PMOS Transistor 
(0 = on)



Multiple Wire Layers

Even with polishing, surface is uneven 
Higher layers must be thicker, and wires 
wider to be reliable. Reduces wiring 
density. 
Insulates heat-generating regions 
Up to 7 layers (4 in memory)



Bare Die Testing

Optical inspection for defects 

Micro-probe tester contacts test pads, 
powers chip and runs test sequence 

Probes wear out, must be replaced 

Bad die are marked as rejects



Packaging

Solder-ball or wire bonding 

Multi-level wiring in package 

Bare chip for heat sink contact in some cases



Packaged Chip Testing

Initial test (some fail in bonding) 

Performance grading test 

Power and thermal cycle tests 

Vibration tests (for some) 

Packages with bad chips recycled



Newer technologies

Intel Tri-gate  
(in production)

Fin-FET



VLSI Cost Model
Estimating Cost of Chips and Systems for a  
Given Technology



Two Kinds of Cost

Non-recurring (NRE) 

Recurring



Nonrecurring Cost

Chip design ($800M),  
Plant capitalization ($8B),  
Mask set ($1.5M)



Recurring Cost

Recurring: Manufacturing, packaging and testing, marketing, distribution, 
warranty, research, overhead, legal 

We will focus on manufacture, package, & test



Packaged Chip Cost

Costpackage and Yieldfinal are given 

Other terms are computed



Cost of Chip

Costwafer is the cost of the finished wafer. Typically around $6000 to $8000 

Other terms are calculated



Chips Per Wafer

Square peg in a round hole formula 

Chips per wafer less ones at edge





Chips Per Wafer

Square peg in a round hole formula 

Chips per wafer less ones at edge



Die Yield

Fraction of good die. Depends on process. 

Defectsunit-area and Yieldwafer are given 

P is a process complexity factor





Die Yield

Fraction of good die. Depends on process. 

Defectsunit-area and Yieldwafer are given 

P is a process complexity factor



Test Cost

Testers are expensive to operate 

Cost must be amortized over good chips



Cost Practice
Costwafer = $7000 
Diameterwafer = 300mm 
Areachip = 13.5 X 19.6 mm 
Defectsunit-area= 0.5 per cm2 

Yieldwafer = 0.999 
Yieldfinal = 0.97 
P = 4.3 
Costhour = $1000 
Timetest = 10 seconds 
TestSiteswafer = 0 
Package Cost = $12


