INstruction Set Wish List

Fleshing out the parameters of the ISA

D) e
J J) 5 ~
J)JJJJ;
jﬁ)jj;jijJ
J)JJ))J)))J
J)))J))J)JJ
)JJJ))JJ)))J
JJ)JJ)J)))JJJ
-4
)JJ)JJJ))))J)
J))JJJJ)))J)))JJ
JJ)JJ)JJ)J)J))JJ
JJJJJJJJJ)))))))J
JJJJJJJJJJJ)JJJJJ
)JJJJJJJJ)JJJ)J)J
33JJJJJJJJJ)JJJ)JJ
JgjjgjjjJJ)))J))JJ
) JJ JJJJJJJJJ))J
| 0333333§33333333333)J
) L J JJJJJJJJJJJJ)J
»ryyyxggggJJJJjjJJJJ))J
‘1_A‘ JJJJJJJJJJJJJJJ)J
JJ JJJJJ JngJJJJJ)J
) JJJJJqug JjjJJJJJJJ
O, JjJJ JJJJJJJJJ
o, ogagagjggu))JJJ
) ‘JJJJJ JJJJJJJJJJ
3 JngJJJJJ))J
QJJJ JJJJJJJ)JJJ
\J 3 JJJJJJJJJ)J
® = J;yyypry
iio‘ _JJ. JJJJAJJJJJJ)J
°2 ; P JﬁJJJJJJ)JJ
P2 JJJJ JJJJJJJJJJJ
&) JJJJjj)JJJJJ)J
Jagj JJJJJJJ))J
; o JJJJJJJJJJ)J)J
JJ))J)JJJJJJJJJ)JJJ
JJJQg)JJJJJJ)JJJ
® JQJJJJJJJJ)JJ
- JJJJJJJJJJJJJ)J)J
‘ ‘))JJJJJ)JJ)JJJ))J
JJJJJ jﬁJJJJJJ)JJ)J
€ JJJJ JJJJJJJJJ))JJ
QJ&J JJJJJ)JJ)J))JJ
JJJ J)JJJJ)JJ)J
JJ)JJ)JJJ)J))J)J
jﬁJJJJJ)JJ)J))JJ
JJJJJJJJJJJ)JJ)JJJ
JJngJ)J))J)JJ)JJ
JJ JJJJ))J)J)JJ)J,
‘ JJJJJJJJJ))JJJJJ))J/
JJJ)JJJ)J))JJJ))J,,
JJJJ)JJJJJJJJJJ)J)))J
JJJJJ)J)J)JJ)))JJ
JJJJJJJJJ))J)JJ
JJJJJJJJJJJ)JJJJ /
gjggJJ)J)J))J $93
: Jﬁg))))JJ 2
JJggg)))JJJ J I
»))J' B8
J)JJJJJ))
JJJ) -),;
: JJJ)J;
‘ JJJJJ 593
JJJJJJJJ 3=)
JJJJJJJJ b o ‘
) JJJngJJ) 32)
) ®, JJJJ B)
M JJJ)Q B o 32
® JJJJJJJ J o
JJJJJ)J ®
)JJJJ
JJJJ)
JJJJ)

5
o>

L

(@
*;_K'x
) @Ol

&
<\
k"\ (@
\v\f‘ & \\

H,.
\‘-
<‘~_,
.- -

.
,‘\\/‘\
4\¥‘\-‘

gt
\yxﬁgqgggg
: JJJJJJ
o Jﬁjﬁjg
J)ﬁﬁgJ
s®. D
%52y 3
5 3
o
b,

/A
" .

dj)
628 -

!\
WS
PAS
VA
58
Xz
PAS
WA
—\
)
S
R
|
&
@
&
{
.
._/
(&
.
&
[

o168
A

0

C

o

5%

e

C

C

C

{
{

%%
Ss 33“ oS!
JJJ)JJ)J
qgj)g))
)JJJ
S

{

J'

JJJ

J))JJ)J

JJJJJJJJJJ J)

333J)JJJJJ)J))J
JJJJJJJJ))JJJ)J

JJJJ)JJJJJ ® JJJ

"JJJJ)JJ)) J

JJJ)JJJJ

)Jgﬁiijjij)JJ

Jj)ﬁjﬁjjjj
))Jj))

(

o A
> o
V@]

L
\
A
& @]
St
@
©
C
Sl
S\
C
UL
&
C
\ &
L
-
©.6
®:
@
9
G
-
\

&6]

00

Se®
\))JJ
)JJJJJJJ
Sets: o
Ve o

O
O

L.L.L‘.
e

/0,006
Q]
O

)| J)j‘
‘JJ 3=
))/'
\)J
)))),,,
ffj))
D & D e
) L JJ»
) J-)
y~)))
JJJJ)
,,,',I,IJ_I
;)jjj
-J)j;
) ,)‘y ,,AJ
) :»JJ
J)4:.),)
) ,}—J’)J
))~,;)J‘
) v,.».)J
) /).J J
};JJJ
)),)»)J
)»JJJ
) ,\J)J
)))J«)
;«:,;,)_,
) .,),;
))), J)
Y2) ;)
/JJJJ
) 2 / J J
J ,,»J
./‘,,
) J
J =) J 7
y y))
) ot D O
D) - > J
> D J .))J
J J)JJJ
WJ.J)JJJJ
0505)JJJJ
)) P
) D o)))),)JJ
) J)J)
)) ot /
.;)—))'
J ©
J)) 5
B oS
JJJ)J))))JJJ
))JJ)))J)J)J
JJ))J))JJ)JJJ
)J)JJ)))J)J JJ
)J)JJJJJJJ)JJ
JJ))J)J))JJJJ ®, L)
JJJ)))JJJJJJ)JJJJ JJJ
)JJ)JJJ)J)JJJJJJJJJﬁ JJ s
JJ))JJ))))J)JJJJJ o, 3
)J)))))J)JJJ)JJJJJJJ
)JJ)J))J)JJJ)JJJJJJﬁﬁ
))J)J)JJJJJJ)JJJJ JJQJ
JJ)JJ)JJ))JJJJJJJjJ 3)
JJijjﬂjﬁﬁﬁﬁiﬁﬁgﬁgﬁﬁng
)J))JJJJJ)JJ))))JJJ
)JJ)J))JJ)J))JJ)J
'JJJ)JJJJ)))))))
))JJ)))J))J))
‘)))JJ)))JJ))
)J)Jj)j)ijj
jj))"
)))))JJ)
n))))JJ
,.)_} J),
Nt) J
JJJJ JJ
333j33))3J3JJ
J)JJJJJ))JJJ)J
))))))JJ)JJJJJJJ
”ﬁjﬁjﬁﬁ:ﬂﬁﬁjﬁ o
)=))))JJ)JJJJ)
))))JJJJ)J))J))
~~r)JJJJJJ)J))J) -
) J);JJJ)J))J))JJ) 8,
) J)/J‘)))JJJ)JJJ)JJ) :
)) /)J)J)JJSJjJ)jiﬁjiji JJ J
) :/)J)))J J B) @) J')
JJJJ));JJ,J)J)
O) 'J-,r),-‘r z//)J;J})))J——AJ)
= ! 1))JJJ)IJ)J4, - J
),) - ‘—)J) /JV .1_/4.-) e) - J

J5
@
'8
@
@)
®
9.
'8
'1).
Q)
l_) 3
858
Yrt))
Y
®
s
ot
y -
@
)Jl e
s
s

Address Range

® 32-bit => 232 or 4G(byte/word) maximum

®x Address by word or byte”

®x Don't need full address range (most of our applications will be small)
® Shortsighted initial views capped addresses at fewer bits

® Keep In mind that address Is used for both data and branches

Addressing

®x |mmediate (operand value in instruction, usually sign-extended)
x PC relative (PC + sign extended immediate)
® Register direct (register number in instruction, operand value In register)
® Register indirect (register number in instruction, address In register)
®x Base + Index
® One register has base address, second has index, added to get address
®x Base + Index + offset
®x Adds immediate offset, sign extended, to base and index values
®x Many others (e.qg., pre/post inc/dec, memory indirect, etc.)

Addressing Modes

x |mmediate: Value in an instruction field
x Often with sign extend or shift

ype

Op

Immediate

Sign Extension

Sign

010010110011 | 12-bit Immediate

16-bit extended

Sign Extension

Sign

010010110011 | 12-bit Immediate

/l

eee 0ee soee.

0000010010110011} 16-bit extended

Sign Extension

Sign

110010110011} 12-bit Immediate

16-bit extended

Sign Extension

Sign

110010110011} 12-bit Immediate

K- ¥ v ¥

1111110010110011| 16-bit extended

Addressing Modes

x PC+ Immediate offset: add sign extended immediate value to PC to get
address

| Sign
Extena

|

PC s

Typel Op | Immediate

Addressing Modes

® Register direct: Refers to a value in a reg

N0 B IWIN| =0

Addressing Modes

® Register indirect: Reg contains memory address
®x Can be mem to mem op
®x May combine with RD

l
V4

Type| Op

NI B IWIN =0

Registers Memory

Addressing Modes

® Register indirect base + Index
x Usually load/store
= RSource/RDest Not shown

Type

_
|

May e shifted by SA
to match operand size

\

NI B IWIN =0

Reqgisters Memory

Addressing Modes

Register indirect base + index + immediate offset: RB + Rl + sign extended
immediate iIs memory address

L

1Type

N0 B IWIN|—= O

More Modes

x \Vidths (load byte, half word, etc.)
® \ariations of shifting/offset (moving smaller values to/from byte positions)
® Pre/Post Increment/Decrement: automatic operation on address register

®x Memory Indirect: Value in mem IS address

More Modes

x \Vidths (load byte, half word, etc.)
® \ariations of shifting/offset (moving smaller values to/from byte positions)
® Pre/Post Increment/Decrement: automatic operation on address register

® Vlemory indirect:=Value in-mem-is-address

Use of Modes

®x Register direct: ALU, Move, Compare

x Register indirect: Jumps, Subroutine calls/returns
x PC + Immediate Offset (PC Relative): Branches

®x Base ((+Index) + Offset): Load and store

x Others are useful but nonessential

® Associating each mode with an instruction type simplifies instruction formats

INnstructions: Load/Store

®x | oad and store word with register

® Accessing smaller units requires addressing those units, and alignment of
values

® Alternative is mask (AND) and shift in ALU

®x Need separate instructions for different banks (e.g., LoadInt, LoadFP,
L oadVector)

Control

x Conditional branches
® [est/branch approaches
® Jumps and unconditional branches
® | ong/short jJumps/branches
® Predicated Instructions
® Subroutine jumps
® |nterrupts, supervisor state
® |[/O model (programmed, memory map)

Instructions: Branch/dump

= Conditional
® [est and branch (branch does test)

®x Branch on condition (condition Is set by another instruction, either automatically as a
side effect, or explicitly)

®x Branch on flag (prior instruction sets flag)
x Branch: PC relative
®x Unconditional:
®x Jump: reg indirect, Subroutine call jump with save PC), Return (Jump via return reg)

» Predication: Instruction may turn into no-op

Condition Codes

® |nteger: Carry out/overflow, zero, nonzero, sign (+/-), special state

x Foating Point: Overflow, underflow, NaN, denormalized, infinity,
Zero, nonzero, mantissa sign, exponent sign

® \/ector: equality, exceptions

INstructions: Subroutine

®x Need way to return

®x Simplest Is store PC++ in return register

x Return Is Jump Indirect using return register
® Return register may e special or general

x Other approaches try to automate stack (e.qg., register windowing)

Instructions: Integer ALU

x Add, Sub, Mul, Div, Mod, Reverse Sub
x AND, OR, NOT, XOR

x Compare, Set Flag

x Shifts

®x Move register to register (also swap)

INstructions: Shifts

® Multiple Forms
® | ogical: bits fall off ends, O shifts In
® Rotate: bits recycle to opposite end
x Arithmetic:
® Right: sign bit Is extended, right bit falls off

x | eft: O shifts Iin at left, bit N-1 falls off, bit N (sign) remains
unchangeo

-loating Point

® | pad/Store
x Add, Sub, Mul, Div, others
®x Compare/status

x \any exceptions: Overflow, underflow, divide by O

Now the Fun Part

® Given the wish list of features, pack them into the
instruction format(s)

x Need to be organizeo

Group by lype

® Example: ALU, Memory, Branch, Jump

®x Example: Integer, FP, Logical, Memory, I/O Branch, Jump,
Predicated

® Fach type usually has a unigue format

® Simplifies layout and decoding

Format: Type Fielo

®x Having a fleld iIn common across all types that specities the
type/format, simplifies decoding

® [ypically 3 or 4 bits

®x One value may have subtypes in another field

-lelds by lype

® or each type, determine the fields it needs
®x —xample: ALU has three operand fields
x Branch has condition and PG relative fields
x Memory has load/store, mode, and address regs

® \Vhat type of info in each field (register number, iImmediate
value, offset, address)

Format: Opcode

®x Need not be consistent across types
®x Many subtypes of Int, logical; only a few FP
x Small number of bits -- logically an extension of the type field

® |n simulator, becomes input to jump table

BN Packing

® Sgueeze flelds into Instruction space
®x May need to change number of registers or number of operands
® \Maybe reduce set of operations

®x [empting to fill holes, but don’t

Assigning Codes

® Determine binary values for
® [nstruction types
® Operation codes
= Comparisons
® |/O devices or memory-mapped locations

. Document tormats, values, and semantics

Example Instruction (ARMv/ manual)

A7.7.4 ADD (register)

ADD (register) adds a register value and an optionally-shifted register value, and writes the result to the
destination register. It can optionally update the condition flags based on the result.

Encoding T3 ARMv7-M

ADD{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0|1514131211109 8 7 6 5 4 3 2 1 O

111010 1[1 000[S| Rn [0 mm3 [Rd [mm2[type] Rm _

Further Documentation

Assembler syntax

ADD{S}<c><g> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S

<shift>

[f present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

See Standard assembler syntax fields on page A7-207.

Specifies the destination register. If <Rd> 1s omitted, this register 1s the same as <Rn> and
encoding T2 1s preferred to encoding T1 if both are available. This can only happen inside
an IT block. If <Rd> is specified, encoding T1 1s preferred to encoding T2. If <Rm> 1s not the
PC, the PC can be used in encoding T2.

Specifies the register that contains the first operand. If the SP is specified for <Rn>, see ADD
(SP plus register) on page A7-227. If <Rm> 1s not the PC, the PC can be used in encoding T2.

Specifies the register that is optionally shifted and used as the second operand. The PC can
be used in encoding T2.

Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and all encodings are permitted. If <shift> 1s specified, only encoding T3 i1s
permitted. The possible shifts and how they are encoded are described 1n Shifts applied to a
register on page A7-212.

INnstruction Set Specification

Defining the programming contract

VWhere we are

® |nstructions defined abstractly

® (Grouped Into types

® [ypes are assigned values

®x Next step Is designing instruction formats

®x Assign codes for operations

-leld type: Instruction type

® Usually fixed in position for all types
x |\Vlakes decoding easier
x [ypically 2 to 4 bits (4 to 16 types)
®x Can have a type that indicates additional bits specify a sub-type

® Example: 3-bit type, value 7 indicates next 2 bits extend the type

Fleld type: Opcode

® Often starts in same position for all types, but may differ in length
® Example: Many more ALU ops than branch ops

® [ypically 3 to 6 bits

® May have values that indicate additional bits extend the opcode (typically
used when type field is small)

Fleld type: Register addr

x |0g2(R) bits, where R= # registers
® One field per operand
® Not every instruction type needs 3 fields

® [WO Or one address architectures use fewer
®x Some operations may have 4 fields

® Need not be adjacent

Fleld type: Immediate

. Made up of “left-over” bits
® Size may vary with format

® Usually sign extended by operations

Other Flelds

®x Condition (may be Iin branch only, or predicate for all)
®x Set/Don’t set condition (a la Arm)
x Shift amount (how many positions)

x “Micro-op” formatting

Endianness

® Byte order within a word

®x Given value 0x12345678, what order should the bytes (12, 34, 56, 7/8)
appear in a word?

x 12 s high order, 78 IS low order

Endianness

f you say:

Byteaddress: O 1 2 3
Value: 12 34 50 (8

Then you are in favor of Little-endian addressing
(low order byte comes at the end)

Endianness

f you say:

Byteaddress: O 1 2 3
Value: el @i A

Then you are in favor of Big-endian addressing
(high order byte comes at the end)

What About Strings?

Given ASCII string (8-bit subset of Unicode): "ABCD”

Normal placement Is first character in low-order byte,
last character in high-order byte

What About Strings?

Given ASCII string (8-bit subset of Unicode): "ABCD”
Little endian byte address 3 holds the low-order byte,
so all of you "Little-endians” end up with:

Byteaddress: 0O 1 2 3
Value: BB s

-irst character, ‘A, Is In low order byte,
last character, D’, IS In high order byte

What About Strings?

Given ASCII string (8-bit subset of Unicode): "ABCD”
BIg endian byte adadress O holds the low-order byte,
SO "Big-endians’ end up with:

Byteaddress: 0O 1 2 3
Value: A m B

-irst character, ‘A, Is In low order byte,
last character, D’, IS In high order byte

Does Endianness Matter?

x \WVithin an architecture, it's just a matter of wiring, and everything Is
consistent

® [ransferring files between systems of different endianness complicates data
sharing

Viodes

® FNndianness can be modal

® Can have alternate instruction set modes

» [ypical modes are security levels

® User/Supervisor, additional levels for VM, etc.

INterrupts

Asynchronously cause jump to handler
Usually a low area of memory contains a table of jumps

Interrupt type N jJumps to Nth element of jump table, causing jump to
handler (saves PC in separate return register)

Need to be able to turn oft

Often supported by supervisor mode

Virtual Memory

®x (Generally requires supervisor mode
® Privileged instructions to manage memory map
® Defines virtual to physical address mapping
®x (Can be paged, segmented, combination, or a hierarchy

® Not required for simulator project

Microarchitecture Ops

® Sometimes need to interact with aspects of the microarchitecture
® [ypically need abillity to force cache lines to flush to memory for |/O
®x May have branch hints for predictor warm-up

x May have privileged instructions for managing other cached state (TLB,
branch predictor)

2.0.0/9 i . . “\ﬁyu)O) ES@WWU e
000000000000 00000000000000 0000000000
0000 90000000000000 , OO JOOCK
N9999.00.000.0.0.00.00.0 JJJJ\.me yvu) NOFN%M& !9!!0%«99055

0500 0 S0 @@ D O
05000582820 650601
05050°%6%5%6%6°%6 %
0,.0.0.0
0 05%6%5%6°6%6%6°:
0505°6%6°5%6°506°.
05%5%6%6%6%6%6%6°.
©,0.0.6.6.86_8
©,6,0.0
0595%6%5%6%5°
050605060
233323333

J
J
o
\J
9,
)
®,

—
B
J
J
Q.
e
®
.
®
s
0900

-

J

J
Jj))
809,050
0605060,
©%6°6%s°
03020,
85050,
egeg0ese

o
©,
\J
®,

NN YN S
NN ST SO OO SOOI YN

®) y Y
P00 P PPV 009000009000 00 000000080000 0000.4 D)
29000000 000000000000000000000000000000.00000)
)90 PO OO OO0 0000000 000000000000 000000000 D

) OO
00809809
\wmmxykmvuwxwmﬁ\xwwwxy oo e o e o e o0 e e o te e o e e o e e e e e e Tale

JJJJJ%WJQJJJJJJJJJJJJJ)J)JJ)))J))J)JJ);M;4,

cocioeiecsssses 01010.0/0707010.0000000008080008 88000000
JC 9000 00 00000000060000000000000000060e000000H
: Q.Qu. JNyJQNyJJJJJJJJJﬁwm@ﬁﬁppwvvyyiﬂﬂLﬂﬂﬂ)JJ

0

AN
)

0101010/0101010/0/0/910/0.0.0.0000000000
QOO0 00000000

Pl
j)j)j)
282008
)

0208

8200,

02050

o

.
oo
>
®,
®,
)
°

)
0509,
43

S

o

()

-’
o®
o
26
S
e
L)

PP RIS S PP
SIS I
050505050500 8 0 0 0
33 o5
sSsstetes:
o o5
o, \J
oo =
o
3
o
J
°
2
J
A
-
)]
J

-
j)
)J
)_)
J
)
o ®,
®
JJ
3
)
ses

—
J
D
o
o
2
o
s
°
e

2
S
9

s Yol B NS
P 5O O ®
SIS
I PIISD
I PP
SN
L0008
00,09
P
IS
00050
)
00,0
059,

\J

05950,
0505,
05059,

059

-t Yt
53

J
850,
%%
2

059,
5,
09,

o,

O u®
33
53333
059,
8058
80 o
000,
Jfgjg

J
o,
9,
o,
\J
J
®,

)j)j

s%6
SIS
6Se®:
53
808>
3
a>)
e

J
55
JjJ

'JJJ
oge!
o

o®
828>

_)J
JJ
BB 0
&
B o
o0
920
323
<3
333J‘
jjJ))'

3

3
<3
J
)
sge
28,
3
°

-

J

S

3
o
<3
3
o0
3
o8
000
qug

23
o
52
J
))J
252
o>
O8>
3
ssoe

J

)

J

&

J

),

o,

9

J

)

9,

9,
it

®
®
°
o,
o,

®,

33

<)
I
0. C
)
0.9,
L)
<)
0.9,
0.9
o 33

Q@
A
J
J
9
e
®
)
33
3

Jololelole e 00 06 00000, Y000 0 0 000000 e 00
)90 00000000000

D58,
B a®,
)j)
33
I
00
s%s
850
53
°

000000000000 00000000

L)MJJ)JLYJJﬁﬁu \yxﬂﬂxxﬂY))))))m)

D0/0010/000/00000 0000000000000
0900000000000 000000000000
)00)9.00.00.0000.0. 0000000000009
000000000000 0060000000009
) 900000090.00)

Nl A
JJ)J
J
J
J
0
J
J
o

)
)J
b
J
J
J
59,
9
®
J
9

<
<

)

CYCYOXOOYOODT
ﬁo QJQJJJJJ 0/000000@!
) @ 000000000
0000000000006
00000000000
00000000609
0000000000

6%6%
ieidss
02008 ¢
82850
eSS0 0
N
82650
e%0%e®
SO
LI
I
B o020 o
B ® ey
B ® ' ® g
)J)))J
o050

33
J)
J
))
)JJ
o

<)
{)
52
_);
©
)
)
2
J
D
©
o
v
&

O'J
sges0
I
3J’Jg
33

)

J

3
e D

)
05060,
JJ)J
34

)
o
o
)
o,
J
J
J
J
®
J
®

\J
o)
o
®
J
8%,
2
J
J
J
J
I

XX vﬁﬂyﬂxﬂjij))JJ),
) 00
X

7 P \J\J\J\J‘J\/\J..J.J.J
OO0000CY N
e e
e et
0000000
90000
e e

%
100000000
eece0000
000000
0000000

OO0
) @

A

)LWJJJJJ)J\
y7 \IV \.J
CXC XX A
DO000000) 0000000000080

CXC)
APy
AYS
A Y
0000000000009
N .
YY)
0000

X))
mﬁ
9 0000000088
00

000 X 00000000008
X) Q?noswﬁhwo.w&wg ‘woﬂu\u 00 JJJJJJJJ)JJJ)J) NN
OO0) ?3?555??5&?. ,J%y.QQJJJJ)J)JJ))))J»;/J
Y 7 v N A D10
.Jﬂ‘i‘i».) 0000000000000 .Qﬂﬁ%ﬁdﬁﬁﬂﬂﬁﬂﬂﬂﬂﬂﬁﬁbUJ/:
00

000000000 Y0 000000
C 0.0 gwﬁc&«o&«oﬁi?ﬁi&iﬁ? 010006
—910/0/0.000000000000000000000000

s s s s s s gl

e
, mmwwmwyMWW<J\mwxMMWwooq

0.0.® 9.0.00.0.0.00000000)
PO OO PO OO0 00D OO00 06000066000
\15/90.0/0:00/00.0.0.0.0.0.00.0.0.060.0000.00

J

NN YN S Y SN N Y Y Y Y SN Y NN SN SN NSO
NN SN N YN Y NS NSO YN NN NN SN
NN YYD NI PO 0SS0 00 0L 006,

NN NN N NN S YN N NN NN N N NN N N SO SOOI OSSO ONONONOYA

ARM Organization

Memory -
weo| Register File 1 Butfer reg
Address Reg] |16 32-bit regs. -
| Sign Ext
i Shift R
i J,, |
ALU MAC CU

|

|

Arm Registers

. 32-bits each

x RO - R12 General Purpose

x R13 Stack Pointer

x» R14 Link Register (subroutine return)

x R15 Program Counter

x CPSR Status Register

®x Condition codes, overflow, etc.

ARM Data lypes

x 3, 106, 32, 64-bit integers (depending on model)
® oating point and vector supported by some versions

®x (Can be big endian or little endian, as set by user

ARM Instruction Formats

. Bits 31-28: Condition Code

® Bits 27-25: Instruction type

® [ypes 000 - 001:

x Bits 24-21: Opcode

x Bit 20: Condition code update flag

®x Bits 19-16: Source register 1

® Bits 15-12: Destination register

1lype 000

® Bits 6-5: Shift type

®x Bits 3-0: Source register 2

®x |mmediate Shift Subset (Bit 4 = 0O)

. Bits 11-7; Shift amount

» Register Shift Subset (Bit 4 = 1)

® Bits 11-3: Register with shift count

S Bl

Other Types

®x 001: Data processing with immediate operand (7-0) and rotate(11-8)
x 010: Load/store with immediate offset

x 011: Load/store with register offset

®x 100: Load/store multiple

x 101: Branch or branch with link

Formats

.51dU29252’2b2bZ$23224‘1£0‘ 181716151413 121110 98

Data processing immediate shift cond[1] |0 O 0 opcode l-“ shift amount | shift n-
Miscellaneous instructions:
See FigureA3-4 | cond[1] |0 0 0|1 0 x x X X X X X X X X X X X X X X X X X X X

Mlscellaneggselfr__l;sgtururgtfg.sz 0 0 0 x/0lx X X X X x X X x x x x/0/x x/1/%x X X X
Multiplies: See Figure A3-3
Extra load/stores: See Figure A3-5 00 0fx x x xx X X X X XXX X XXX X[1/xXx1/XXX X

Undefined instruction Hm X X X X X X X X X X X X X X X X X X X

Viore Formats

Load/store register offset cond [1] HII““ shift amount | shift u-

Med'as'gztgggfg‘;gg cond [1] X X X X X X X X X X X X X X X X X X x x!|1

Architecturally undefined cond [1] X X X X X X xx x xx x1111
Load/store multiple cond [1] 0 0/PIU SJ - reqgister list
Branch and branch with link cond [1] - 24-bit offset

Coprocessor load/store and double
register transfers | cond [3] 1 0/|P|UIN|W|L 8-bit offset
Coprocessor register transfers cond [3] 0 |opcode1| L -“ cp_num |opcode2 | 1 -

Software interrupt cond [1] swi number

Unconditionalinstructions: 1T 1 1 11X x x
See Figure A3-6

Condition Codes

Opcode
[31:28]

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

1010

Mnemonic
extension

EQ
NE

Meaning

Equal

Not equal

Carry set/unsigned higher or same

Carry clear/unsigned lower
Minus/negative
Plus/positive or zero
Overflow

No overflow

Unsigned higher

Unsigned lower or same

Signed greater than or equal

Signed less than

Signed greater than

Signed less than or equal

Always (unconditional)

See Condition code Obl111

Condition flag state

Z set

Z clear

C set

C clear

N set

N clear

V set

V clear

C set and Z clear
C clear or Z set

N set and V set, or
N clear and V clear (N ==YV)

N set and V clear, or
N clear and V set (N = V)

Z clear, and either N setand V set, or
Nclearand Vclear (Z=0N==YV)

Z set, or N set and V clear, or
Nclearand Vset(Z==1orN !=YV)

DP Instructions

Opcode

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Mnemonic

AND
EOR
SUB
RSB
ADD
ADC
SBC
RSC
ST
TEQ
CMP
CMN
ORR
MOV
BIC

MVN

Operation

Logical AND

Logical Exclusive OR
Subtract

Reverse Subtract

Add

Add with Carry
Subtract with Carry
Reverse Subtract with Carry
Test

Test Equivalence
Compare

Compare Negated
Logical (inclusive) OR
Move

Bit Clear

Move Not

Action

Rd := Rn AND shifter_operand

Rd := Rn EOR shifter_operand

Rd := Rn - shifter_operand

Rd := shifter_operand - Rn

Rd := Rn + shifter_operand

Rd := Rn + shifter_operand + Carry Flag

Rd := Rn - shifter_operand - NOT(Carry Flag)
Rd := shifter_operand - Rn - NOT(Carry Flag)
Update flags after Rn AND shifter_operand
Update flags after Rn EOR shifter_operand
Update flags after Rn - shifter_operand
Update flags after Rn + shifter_operand

Rd := Rn OR shifter_operand

Rd := shifter_operand (no first operand)

Rd := Rn AND NOT(shifter_operand)

Rd := NOT shifter_operand (no first operand)

ARM Manual

® Available on 335 course page:

x Arm v/ Reterence Manual

® Nttps://people.cs.umass.edu/~weems/homepage/courses/
cMpPscl-335.ntml

https://people.cs.umass.edu/~weems/homepage/courses/cmpsci-335.html

leam Homework

®x [For Wednesday 2/13, complete ISA description, including register set
description

® |nclude format diagrams, encodings
®x Explain all instructions, esp. load/store, branch
®x Use ARM manual as guide for descriptions

® [his IS the draft of your ISA report

leamwork
Remember to work as a team!

