
Instruction Set Wish List
Fleshing out the parameters of the ISA

Memory Model

Address Range

32-bit => 232 or 4G(byte/word) maximum

Address by word or byte?

Don’t need full address range (most of our applications will be small)

Shortsighted initial views capped addresses at fewer bits

Keep in mind that address is used for both data and branches

Addressing
Immediate (operand value in instruction, usually sign-extended)
PC relative (PC + sign extended immediate)
Register direct (register number in instruction, operand value in register)
Register indirect (register number in instruction, address in register)
Base + index

One register has base address, second has index, added to get address
Base + index + offset

Adds immediate offset, sign extended, to base and index values
Many others (e.g., pre/post inc/dec, memory indirect, etc.)

Addressing Modes

Immediate: Value in an instruction field
Often with sign extend or shift

Type Op Immediate

Sign Extension

010010110011 12-bit immediate

_________________ 16-bit extended

Sign

Sign Extension

010010110011 12-bit immediate

0000010010110011 16-bit extended

Sign

Sign Extension

110010110011 12-bit immediate

_________________ 16-bit extended

Sign

Sign Extension

110010110011 12-bit immediate

1111110010110011 16-bit extended

Sign

Addressing Modes

PC+ Immediate offset: add sign extended immediate value to PC to get
address

Type Op Immediate

PC +

Sign
Extend

Addressing Modes

Register direct: Refers to a value in a reg
0
1
2
3
4
5
6
7

Type Op RD RD RD

Addressing Modes
Register indirect: Reg contains memory address
Can be mem to mem op
May combine with RD 0

1
2
3
4
5
6
7

Type Op RI RI RI

Registers Memory

Addressing Modes
Register indirect base + index
Usually load/store
RSource/RDest not shown

0
1
2
3
4
5
6
7

Type Op RB RI SA

Registers Memory

+
May be shifted by SA
to match operand size

Addressing Modes
Register indirect base + index + immediate offset: RB + RI + sign extended
immediate is memory address

0
1
2
3
4
5
6
7

+

Sign
Extend

Type Op RB RI Imm

More Modes

Widths (load byte, half word, etc.)

Variations of shifting/offset (moving smaller values to/from byte positions)

Pre/Post Increment/Decrement: automatic operation on address register

Memory indirect: Value in mem is address

More Modes

Widths (load byte, half word, etc.)

Variations of shifting/offset (moving smaller values to/from byte positions)

Pre/Post Increment/Decrement: automatic operation on address register

Memory indirect: Value in mem is address

Use of Modes
Register direct: ALU, Move, Compare

Register indirect: Jumps, Subroutine calls/returns

PC + Immediate Offset (PC Relative): Branches

Base ((+Index) + Offset): Load and store

Others are useful but nonessential

Associating each mode with an instruction type simplifies instruction formats

Instructions: Load/Store

Load and store word with register

Accessing smaller units requires addressing those units, and alignment of
values

Alternative is mask (AND) and shift in ALU

Need separate instructions for different banks (e.g., LoadInt, LoadFP,
LoadVector)

Control
Conditional branches

Test/branch approaches
Jumps and unconditional branches
Long/short jumps/branches
Predicated instructions
Subroutine jumps
Interrupts, supervisor state
I/O model (programmed, memory map)

Instructions: Branch/Jump
Conditional

Test and branch (branch does test)

Branch on condition (condition is set by another instruction, either automatically as a
side effect, or explicitly)

Branch on flag (prior instruction sets flag)

Branch: PC relative

Unconditional:

Jump: reg indirect, Subroutine call (jump with save PC), Return (Jump via return reg)

Predication: Instruction may turn into no-op

Condition Codes

Integer: Carry out/overflow, zero, nonzero, sign (+/-), special state

Floating Point: Overflow, underflow, NaN, denormalized, infinity,
zero, nonzero, mantissa sign, exponent sign

Vector: Equality, exceptions

Instructions: Subroutine

Need way to return

Simplest is store PC++ in return register

Return is Jump indirect using return register

Return register may be special or general

Other approaches try to automate stack (e.g., register windowing)

Instructions: Integer ALU

Add, Sub, Mul, Div, Mod, Reverse Sub

AND, OR, NOT, XOR

Compare, Set Flag

Shifts

Move register to register (also Swap)

Instructions: Shifts
Multiple Forms

Logical: bits fall off ends, 0 shifts in

Rotate: bits recycle to opposite end

Arithmetic:

Right: sign bit is extended, right bit falls off

Left: 0 shifts in at left, bit N-1 falls off, bit N (sign) remains
unchanged

Floating Point

Load/Store

Add, Sub, Mul, Div, others

Compare/Status

Many exceptions: Overflow, underflow, divide by 0

Now the Fun Part

Given the wish list of features, pack them into the
instruction format(s)

Need to be organized

Group by Type

Example: ALU, Memory, Branch, Jump

Example: Integer, FP, Logical, Memory, I/O Branch, Jump,
Predicated

Each type usually has a unique format

Simplifies layout and decoding

Format: Type Field

Having a field in common across all types that specifies the
type/format, simplifies decoding

Typically 3 or 4 bits

One value may have subtypes in another field

Fields by Type
For each type, determine the fields it needs

Example: ALU has three operand fields

Branch has condition and PC relative fields

Memory has load/store, mode, and address regs

What type of info in each field (register number, immediate
value, offset, address)

Format: Opcode

Need not be consistent across types

Many subtypes of Int, logical; only a few FP

Small number of bits -- logically an extension of the type field

In simulator, becomes input to jump table

Bin Packing

Squeeze fields into instruction space

May need to change number of registers or number of operands

Maybe reduce set of operations

Tempting to fill holes, but don’t

Assigning Codes
Determine binary values for

Instruction types

Operation codes

Comparisons

I/O devices or memory-mapped locations

Document formats, values, and semantics

Example Instruction (ARMv7 manual)

Further Documentation

Instruction Set Specification
Defining the programming contract

Where we are

Instructions defined abstractly

Grouped into types

Types are assigned values

Next step is designing instruction formats

Assign codes for operations

Field type: Instruction type

Usually fixed in position for all types

Makes decoding easier

Typically 2 to 4 bits (4 to 16 types)

Can have a type that indicates additional bits specify a sub-type

Example: 3-bit type, value 7 indicates next 2 bits extend the type

Field type: Opcode

Often starts in same position for all types, but may differ in length

Example: Many more ALU ops than branch ops

Typically 3 to 6 bits

May have values that indicate additional bits extend the opcode (typically
used when type field is small)

Field type: Register addr
log2(R) bits, where R= # registers

One field per operand

Not every instruction type needs 3 fields

Two or one address architectures use fewer

Some operations may have 4 fields

Need not be adjacent

Field type: Immediate

Made up of “left-over” bits

Size may vary with format

Usually sign extended by operations

Other Fields

Condition (may be in branch only, or predicate for all)

Set/Don’t set condition (a la Arm)

Shift amount (how many positions)

“Micro-op” formatting

Endianness

Byte order within a word

Given value 0x12345678, what order should the bytes (12, 34, 56, 78)
appear in a word?

12 is high order, 78 is low order

Endianness

If you say:

Byte address: 0 1 2 3
Value: 12 34 56 78

Then you are in favor of Little-endian addressing
(low order byte comes at the end)

Endianness

If you say:

Byte address: 0 1 2 3
Value: 78 56 34 12

Then you are in favor of Big-endian addressing
(high order byte comes at the end)

What About Strings?

Given ASCII string (8-bit subset of Unicode): “ABCD”

Normal placement is first character in low-order byte,
last character in high-order byte

What About Strings?

Given ASCII string (8-bit subset of Unicode): “ABCD”

Byte address: 0 1 2 3
Value: D C B A

so all of you “Little-endians” end up with:

First character, ‘A’, is in low order byte,
last character, ‘D’, is in high order byte

Little endian byte address 3 holds the low-order byte,

What About Strings?

Given ASCII string (8-bit subset of Unicode): “ABCD”

Byte address: 0 1 2 3
Value: A B C D

so “Big-endians” end up with:
Big endian byte address 0 holds the low-order byte,

First character, ‘A’, is in low order byte,
last character, ‘D’, is in high order byte

Does Endianness Matter?

Within an architecture, it’s just a matter of wiring, and everything is
consistent

Transferring files between systems of different endianness complicates data
sharing

Modes

Endianness can be modal

Can have alternate instruction set modes

Typical modes are security levels

User/Supervisor, additional levels for VM, etc.

Interrupts

Asynchronously cause jump to handler

Usually a low area of memory contains a table of jumps

Interrupt type N jumps to Nth element of jump table, causing jump to
handler (saves PC in separate return register)

Need to be able to turn off

Often supported by supervisor mode

Virtual Memory

Generally requires supervisor mode

Privileged instructions to manage memory map

Defines virtual to physical address mapping

Can be paged, segmented, combination, or a hierarchy

Not required for simulator project

Microarchitecture Ops

Sometimes need to interact with aspects of the microarchitecture

Typically need ability to force cache lines to flush to memory for I/O

May have branch hints for predictor warm-up

May have privileged instructions for managing other cached state (TLB,
branch predictor)

Arm Architecture
Example Embedded RISC Processor

ARM Organization

Register File
16 32-bit regsAddress Reg

Buffer reg

Inc
Sign Ext

Inc Shift

ALU MAC

IR

CU

Memory

R15 (PC)

Arm Registers
32-bits each

R0 - R12 General Purpose

R13 Stack Pointer

R14 Link Register (subroutine return)

R15 Program Counter

CPSR Status Register

Condition codes, overflow, etc.

ARM Data Types

8, 16, 32, 64-bit integers (depending on model)

Floating point and vector supported by some versions

Can be big endian or little endian, as set by user

ARM Instruction Formats
Bits 31-28: Condition Code

Bits 27-25: Instruction type

Types 000 - 001:

Bits 24-21: Opcode

Bit 20: Condition code update flag

Bits 19-16: Source register 1

Bits 15-12: Destination register

Type 000
Bits 6-5: Shift type

Bits 3-0: Source register 2

Immediate Shift Subset (Bit 4 = 0)

Bits 11-7: Shift amount

Register Shift Subset (Bit 4 = 1)

Bits 11-8: Register with shift count

Bit 7 = 0

Other Types

001: Data processing with immediate operand (7-0) and rotate(11-8)

010: Load/store with immediate offset

011: Load/store with register offset

100: Load/store multiple

101: Branch or branch with link

Formats

More Formats

Condition Codes

DP Instructions

ARM Manual

Available on 335 course page:

Arm v7 Reference Manual

https://people.cs.umass.edu/~weems/homepage/courses/
cmpsci-335.html

https://people.cs.umass.edu/~weems/homepage/courses/cmpsci-335.html

Team Homework

For Wednesday 2/13, complete ISA description, including register set
description

Include format diagrams, encodings

Explain all instructions, esp. load/store, branch

Use ARM manual as guide for descriptions

This is the draft of your ISA report

Teamwork
Remember to work as a team!

