
Basics of Instruction Set Design
Shaping the Outline of an Architecture

General or Special?

What is the goal of the architecture?

General purpose, but better

Faster, lower power, more secure

Special purpose, for an application or domain

General
Covers all domains well

Broad set of data types

Instructions for all common operations

Meant to improve upon what exists

Most recent significant commercial attempt at a clean-sheet design is Itanium

RISC architectures of the 80s

Backwards compatibility leads to evolution

Special

Many domains have distinct data types and operations, or unique
constraints

Signal processing, embedded control, GPU, network routing, database,
mobile, high security, vector processing, gaming, neural nets

Sometimes clean sheet, often customize an “IP” core

Basics

Word size (e.g., 32 bits)

Data types

Registers

Execution model

Word Size

Affects all aspects

Data types, instructions, addressing, fetch

Typically a power of 2 (8, 16, 32, 64 bit)

Many 64-bit designs pack 2 32-bit instructions into a word (Itanium packed
3 40-bit instructions in 128 bits)

Not advisable to buck this tradition

Basics

Word size (32 bits)

Data types

Registers

Execution model

Data Types
Integers: 8, 16, 32, 64 bits

Floating point: 32, 64, 80 bits (IEEE 754 standard)

Chars: 8, 16 bits

Vectors: 64 words, streams (MMX/SSE or Cray style)

Pixels: splitting of integers into fields

Strings, structs, objects, pointers, packets, complex, rationals, etc.

Implications of Types

Each type necessitates another set of instructions (been tried: tagged
memory)

May need separate register bank for each type, especially if formats
incompatible

Smaller Int types usually packed within larger Int types (e.g., 64-bit registers
with a pair of 32-bit values, 4 16-bit, 8 bytes)

Choosing Types
What is necessary and unchanging?

What can be efficiently programmed on top of a simpler set of types?

Are there any special types that are easily described and that will boost
performance?

Are they expressible in a high level language in a way that a compiler will
recognize and be able to use?

How do they relate to word size?

Floating Point

Better to keep in separate registers due to much different format from Ints

Avoids some NaN exceptions

64-bit regs can hold 2 32-bit values, but have to be careful about how
operations use the registers. (Stick to one size of FP unless you need both.)

IEEE 754 standard essentially rules this space

MMX/SSE Vector

Word divided into smaller Ints -- 64-bit word holds 4 16-bit values

Arithmetic operations take place on smaller values in parallel

Need operations for packing/unpacking

16 bit 16 bit 16 bit 16bit

Cray-Style Vector

Bank of N registers each with M words
(usually FP)

Operations between corresponding
registers (vector-vector)

Scalar-vector, vector reduce to scalar

Gather/scatter, population count

00 01 02 03
10 11 12 13
20 21 23 23
30 31 32 33
40 41 42 43
50 51 52 53
60 61 62 63
70 71 72 73

N

M

Operations

What ops go with each data type?

Integers: Arithmetic, logic, comparisons

Floats: Arithmetic, comparisons

Chars: Pack, unpack, shift, mask, compare

Vectors: Gather, scatter, arith., pop. count

Basics

Word size (32 bits)

Data types

Registers

Execution model

Registers
General vs. special purpose

Mixed

Bank size considerations

How many are useful?

Space in operand fields

Bank per type vs. unified

Same or different size?

0
1
2
3
4
5
6
7

Registers
General vs. special purpose

Mixed

Bank size considerations

How many are useful?

Space in operand fields

Bank per type vs. unified

0 0
1
2
3
4
5 SP
6 Return
7 PC

Basic Computational Needs Defined

Word size

Data types

Operations

Working registers

Now ready to address execution paradigm

Basics

Word size (32 bits)

Data types

Registers

Execution model

Execution Model

Number of addresses (operands) per instruction

Fetch/next instruction

Memory organization

Control

Addresses (Operands)

Three per instruction is flexible and efficient in time, but requires more space
within the instruction

A = B op C

Two per instruction makes one do double-duty. More compact instructions

A = A op B

Less Common

One address requires an implicit second operand (a unique register,
typically called the accumulator). Compact instructions, but more of them

Zero address uses a stack. Tiny instructions, and a challenging
programming model

Fetch

Single instruction per word, autoincrement PC

Multiple instructions per word, autoinc PC

Multiple words per instruction, PC advances by variable amount

Micro-operations in long (or multiple) word, including next PC in each

Memory Organization

Harvard architecture -- separate instruction and data memory

Princeton (von Neumann) architecture -- combined

Word/byte address

Data path width

Address space

