
Vector Processing
Manycores, SIMDs, and Cells (Oh my!)

Sodani HC 2015
Knights Landing (KNL): 2nd Generation Intel Xeon Phi Processor

Intel 80-core Teraflops Research Chip

Intel Exec Quote

“We can now put 80 cores on a chip.
We just don’t have any idea of

what to do with them.”

Intel MIC (Xeon Phi)
Many Integrated Cores - after Larrabee GPU & 80 core

Knights Ferry prototype with 32 cores, 1024 bit ring

Knights Corner product

50 x86 (P54C) cores, 4-thread, superscalar, in-order

512 bit SIMD registers

16x32 bit vectors, gather/scatter/mask

Programmed with OpenMP, OpenCL, Intel Cilk Plus

Claim up to 1.2 TFLOPS @ 300W

Knight’s Landing Phi
72 Silvermont Atom cores in 36 tiles

2-wide OoO issue, 4-way threading, mesh connect

Two 512-bit vector units

Each pair shares 1MB cache

MESIF, directory-based coherence with other tiles

Up to 215 Watts

Memory

16GB MCDRAM on same carrier (a la Pentium Pro)

3-modes: All cache, all RAM, part cache part RAM

Specially allocated in software for critical data

Other data in slower DDR

Interconnect

Mesh of rings with three modes

All-to-all: slowest but most general

Quadrant: Directories for groups of 9 tiles (faster)

Sub-NUMA: Quadrants are separate NUMA domains that allow explicit
software optimization for locality (fastest, most programming effort)

25GB/s Omni-Path external ports

Performance

5X peak DP floating performance of Knights Corner (implies about
6TFLOPS)

At 200W, gives about 30GFLOPS/W

Knights Mill variant introduced 2017 with optimizations for machine learning

Synergistic Processing in Cell’s
Multicore Architecture
Gschwind, et. al.

Cell Broadband Engine Overview

Heteogeneous Multicore Processor

One Power-PC-based control processor (PPE)

Eight “Synergistic” Vector-only Processors (SPE)

Interconnect Bus (EIB)

Common address space

CBE Diagram

Overview of the Cell Broadband Engine
architecture

As Figure 1 illustrates, the Cell BE imple-
ments a single-chip multiprocessor with nine
processors operating on a shared, coherent sys-
tem memory. The function of the processor
elements is specialized into two types: the
Power processor element (PPE) is optimized for
control tasks and the eight synergistic processor
elements (SPEs) provide an execution envi-
ronment optimized for data processing. Fig-
ure 2 is a die photo of the Cell BE.

The design goals of the SPE and its archi-
tectural specification were to optimize for a
low complexity, low area implementation.

The PPE is built on IBM’s 64-bit Power
Architecture with 128-bit vector media exten-

sions5 and a two-level on-chip cache hierar-
chy. It is fully compliant with the 64-bit Power
Architecture specification and can run 32-bit
and 64-bit operating systems and applications.

The SPEs are independent processors, each
running an independent application thread.
The SPE design is optimized for computa-
tion-intensive applications. Each SPE includes
a private local store for efficient instruction
and data access, but also has full access to the
coherent shared memory, including the mem-
ory-mapped I/O space.

Both types of processor cores share access
to a common address space, which includes
main memory, and address ranges corre-
sponding to each SPE’s local store, control reg-
isters, and I/O devices.

11MARCH–APRIL 2006

Flex I/O

Memory
interface
controller

Bus
interface
controller

Dual XDR
32 bytes/cycle 16 bytes/cycle

Element interconnect bus (up to 96 bytes/cycle)

16 bytes/cycle

Synergistic processor elements

Power
processor
element

Power
processor unit

Power
execution

unit

L1
cache

L2 cache

Local
store

SXU
SPU

SMF

Local
store

SXU
SPU

SMF

Local
store

SXU
SPU

SMF

Local
store

SXU
SPU

SMF

16 bytes/cycle 16 bytes/cycle (2x)

Local
store

SXU
SPU

SMF

Local
store

SXU
SPU

SMF

Local
store

SXU
SPU

SMF

Local
store

SXU
SPU

SMF

64-bit Power Architecture with vector media extensions

Figure 1. Cell system architecture. The Cell Broadband Engine Architecture integrates a Power processor element (PPE) and
eight synergistic processor elements (SPEs) in a unified system architecture. The PPE is based on the 64-bit Power Architec-
ture with vector media extensions and provides common system functions, while the SPEs perform data-intensive process-
ing. The element interconnect bus connects the processor elements with a high-performance communication subsystem.

PPE Functionality

Runs Operating System

General Purpose (scalar heavy) computation

Organizes structure of global address space

Coordinates distribution and collection of data

SPE Functionality

Vector/SIMD Instruction Set

128 128-bit Registers

Register Contents are polymorphic

256 KB Local Store

2-way Specialized Pipeline

SPE Programming (I)
SPE has no native scalar processing

No scalar registers

Registers can hold vectors of ints and floats

Instead, SPE Scalar processing is folded into vector processing

Manual alignment via software

Aim is for compiler to pick appropriate alignment

SPE Programming (II)
Scalar Layering

Sequential scalar operations on a vector machine

Large register file can help (more scratch space)

Data-parallel conditional execution

Branches expensive in SPEs

Minimal Branch Prediction (Hints)

Convert if-then to vector select

Scalar Layering

aspects: scalar operations mapping onto the
data-parallel execution engines and data man-
agement to align, extract, and insert data on
memory accesses using the memory interface.

To illustrate how scalar layering works, con-
sider the operation of SIMD data-parallel exe-
cution pipelines as described earlier on a
four-element vector consisting of one word

each. Figure 4a illustrates how a processor exe-
cutes a SIMD instruction by performing the
same operation—in parallel—on each ele-
ment. In the example, the SIMD instruction
sources two vector registers containing ele-
ments x0, x1, x2, and x3 and y0, y1, y2, and y3,
respectively, and yields four results: z0 = x0 −
y0; z1 = x1 − y1; z2 = x2 − y2; and z3 = x3 − y3 in

15MARCH–APRIL 2006

x0 x1 x2 x3 y0 y1 y2 y3

z0 z1 z2 z3(a)

− − − −

− − x − − y − −

− − − z(b)

− − − −

(c)

− − x − − y − −

−

−−x − −y − −

−−&x − −&y − −

−− −z

− − −

RotateRotate

(d)
m0 m1 m2 z

m0 m1 m2 m3

10111212 14151817 18191a1b 00010203

−z − −

−&z − −

Shuffle

CWX

Figure 4. How scalar layering works. Scalar layering aligns scalar data under compiler control. (a) SIMD oper-
ation, (b) alignment mismatch of scalar elements in vector registers without data alignment, (c) operations
with scalar layering, compiler-managed scalar extraction, and data alignment, and (d) subvector write using
optimized read-modify-write sequence.

Data-parallel
Selection

Data-parallel conditional execution
Many legacy architectures that focus on

scalar computation emphasize the use of con-
ditional test and branch to select from possi-
ble data sources. Instead, following the focus
on PDPC, we made data-parallel select the
preferred method for implementing condi-
tional computation. The data-parallel select
instruction takes two data inputs and a con-
trol input (all stored in the unified register file)
and independently selects one of the two data
inputs for each vector slot under the control
of the select control input. Using data-paral-
lel select to compute the result of condition-
al program flow integrates conditional
operations into SIMD-based computation by
eliminating the need to convert between scalar
and vector representation. The resulting vec-

torized code thus contains conditional expres-
sions, which in turn lets the SPU execute con-
ditional execution sequences in parallel.

As Figure 6 shows, to use conditional
branch operations, the compiler must trans-
late a simple element-wise data selection into
a sequence of scalar conditional tests, each fol-
lowed by a data-dependent branch. In addi-
tion to the sequential schedule, each
individual branch is data dependent and many
branches are prone to misprediction by even
the most sophisticated dynamic prediction
algorithm. This results in a long latency con-
trol-flow dominated instruction schedule as
shown in Figure 6b, exacerbated by a signifi-
cant penalty for each mispredicted branch.
The control-dominated test-and-branch
sequence must be embedded between code to

18

HOT CHIPS 17

IEEE MICRO

for (i = 0; i< VL; i++)
 if (a[i]>b[i])
 m[i] = a[i]*2;
 else
 m[i] = b[i]*3;

(a)

a[0]>b[0]

m[0]=a[0]*2;

a[1]>b[1]

m[0]=b[0]*3;

m[2]=a[2]*2; m[2]=b[2]*2;

m[3]=b[3]*3;m[3]=a[3]*2

a[3]>b[3]

m[1]=b[1]*3;m[1]=a[1]*2;

a[2]>b[2]

(b)

(c)

s[0]=a[0]>b[0]

a'[0]=a[0]*2;

m[0]=s[0]?
a'[0]:b'[0]

b'[0]=b[0]*3;

s[1]=a[1]>b[1]

a'[1]=a[1]*1; b'[1]=b[1]*3;

m[1]=s[1]?
a'[1]:b'[1]

s[2]=a[2]>b[2]

a'[2]=a[2]*2; b'[2]=b[2]*2;

m[2]=s[2]?
a'[2]:b'[2]

s[3]=a[3]>b[3]

a'[3]=a[3]*3; b'[2]=b[3]*3;

m[3]=s[3]?
a'[3]:b'[3]

Figure 6. The use of data-parallel select to exploit data parallelism. (a) Conditional operations are integrated into SIMD-based
computation. (b) Using traditional code generation techniques, the source code is turned into a sequence of test and condi-
tional branch instructions for each vector element. High branch misprediction rates of data-dependent branches and data
conversion between vector and scalar representations incur long schedules. (c) Exploiting data-parallel conditional execution
with data-parallel select allows the processing of conditional operations concurrently on multiple vector elements. In addition
to exploiting data parallelism, data-parallel select purges hard-to-predict data-dependent branches from the instruction mix.

SPE Arithmetic and Local Store

Emphasis on Non-saturating integer and single-precision FP

Local Store is NOT a cache

Simpler Hardware

Deterministic Timing

YOU have to perform the DMAs yourself (explicit prefetch for next thread)

Local Store holds code, too!

SPE Pipelines

Dual-pipelines, statically scheduled

Even = Integer and FP operations

Odd = Memory, Branch, and Data Formatting

Explicit branch prefetcher instruction

SPE Pipelines

reexecute a recovery sequence in the event of
unaligned accesses. However, every unaligned
access incurs a substantial performance penalty.
Because both these solutions have high penal-
ties, we opted to use a compiler-aided alignment
policy. When the compiler cannot determine
alignment statically, the compiler generates
explicit dual-load and data-merge sequences for
vector accesses. Most vector accesses are part of
longer loops, so the actual throughput of load
operations approaches one load per quadword
loaded for common unit stride streams, since
two iterations can share each load operation as
an iteration-carried dependence. Compilation
techniques to exploit this feature are available
in the literature.7

The local store also serves as storage for pro-
gram instructions that the SPU will execute
(see Figure 2). The SPU fetches instructions
with 128-byte accesses from a wide fetch port,
delivering 32 instructions per access. It stores
instructions in instruction line buffers and
delivers them to the execution pipelines.
Exploiting wide accesses for both instruction
and data accesses decreases the necessary
accesses and improves power efficiency.
Instruction and data accesses and the SMF

controller share a single SRAM port, which
improves memory density and reduces the
latency for local store access.

Statically scheduled instruction-level
parallelism

In the Cell BE, the SPU front end imple-
ments statically scheduled instruction fetch
to reduce the cost of dynamic instruction
scheduling hardware. However, the SPU
architecture is not limited to implementations
using static scheduling.

The SPU architecture is bundle-oriented
and supports the delivery of up to two instruc-
tions per cycle to the data parallel back end.
All instructions respect their dependencies to
ensure sequential program semantics for
future architectural compatibility and to
ensure good code density.

The use of compiler-generated bundling
simplifies instruction routing logic. By relying
on compile-time scheduling to optimize
instruction layout and encode instruction
streams in bundles, the SPU eliminates much
of the overhead of dynamic scheduling. As Fig-
ure 7 shows, instruction execution resources
fall into one of two execution complexes: odd

21MARCH–APRIL 2006

IS2IS1ID3ID2ID1IB2IB1IF5IF4IF3IF2

WBEX4EX3EX2EX1

IF1

RF2RF1

SPE pipeline front end

SPE pipeline back end

Branch instruction Odd execution complex

Even execution complex

Permute instruction

WBEX6EX5EX4EX3EX2EX1

Load/store instruction

WBEX2EX1

Fixed-point instruction

WBEX6EX5EX4EX3EX2EX1

Floating-point instruction

IF
IB
ID
IS

RF
EX
WB

Instruction fetch
Instruction buffer
Instruction decode
Instruction issue
Register file access
Execution
Write back

Figure 7. Microarchitecture for the SPE pipeline. The SPE architecture is bundle-oriented, supporting the
delivery of up to two instructions per cycle to the data-parallel back end. The architecture supports very high
frequency operation with comparatively modest pipeline depths by reducing architectural complexity.

Summary of Techniques
Turn scalar operations into shuffles

Turn branches into selects (when possible)

Plan local store resources carefully

Balance your pipeline allocations carefully

The point:

Hardware is simpler, but

Much more is exposed to the software

Single Instruction Multiple Data
Obvious and simple rarely is either

Bit-Serial SIMD: CM-1 (&2), late 1980’s

Sort of SIMD: CM-5 (SPMD), early 1990’s

Maspar (late 1980s)

Grew out of project at Digital
Equipment Corp

32 4-bit PEs per chip

8-way grid interconnect

Up to 16K processors

Many others of that ilk
Goodyear Staran, MPP, ASPRO (bit-serial SIMD)

CMU/Intel Warp and iWarp systolic arrays

nCUBE (SPMD)

Inmos Transputer (CSP array)

UMass/Hughes IUA

heterogeneous bit-serial SIMD, 32-bit SPMD, 32-bit CC-NUMA SMP

Why SIMD?

Conceptually simple form of parallelism

Parallel vector operations common in mathematics

Also common in image processing, signal processing, database, etc.

Serial program with parallel data type and operations

Efficient silicon implementation (many ALUs under a single control unit)

Why not SIMD?
Size of problem almost never matches hardware

If smaller, then a fraction of the array is idle

If larger, then the array has to be virtualized

Virtualization has to swap contexts

Handle communication across virtual tiles boundaries

More fractional arrays at edge of virtual array

Why not SIMD?
Branches have to serialize — times are additive

IF (A < B) implies elements that meet the condition take the branch, those that fail
take the ELSE clause

Only one source of instructions for all elements

Select A<B, issue instructions

Select A>=B, issue instructions

Multiway branches further divide the elements

Why not SIMD?
Instruction distribution is hard to scale up

Assumes a globally synchronous clock

Broadcast has to be balanced for simultaneous arrival

Instruction generation takes multiple operations, so has to run faster than
consumption, which is simpler

Makes clock scaling difficult

Scaling in size consumes much more power

Why not SIMD?

Collective operations can be slow

Need feedback from computations for global branches

Fan-in from thousands to millions of elements is a multi-stage process (can
be pipelined but doesn’t hide latency)

Array either sits idle during collective, or control is much more complex

Why not SIMD?

Context switching is expensive

Elements typically lack enough space to hold multiple contexts

Entire array has massive amount of data

Switching moves whole context out, new context in

Array is idle for long period during context switch

Why not SIMD?
Can only address some issues by multithreading

Hide collective delay, hide issue latency

Local expansion of instructions

Allows asynchronous clocking, communication

Needs rate buffers between asynchronous sections

More complex hardware, fewer elements

Optimal use exposes threading in programming model

GPU Architecture
Not just for graphics any more

Fermi: NVIDIA’s Next Generation CUDA
Compute Architecture
NVIDIA 2009

CUDA Programs
Kernel = Parallel CUDA Program

Thread = basic unit of processing

operates on Kernels

Private Local Memory
Thread Block

Set of threads

Shared Memory between threads

Grid

Array of Thread Blocks

Shared Global Memory

6



A Quick Refresher on CUDA

CUDA is the hardware and software architecture that enables NVIDIA GPUs to execute

programs written with C, C++, Fortran, OpenCL, DirectCompute, and other languages. A

CUDA program calls parallel kernels. A kernel executes in parallel across a set of parallel

threads. The programmer or compiler organizes these threads in thread blocks and grids of

thread blocks. The GPU instantiates a kernel program on a grid of parallel thread blocks.

Each thread within a thread block executes an instance of the kernel, and has a thread ID

within its thread block, program counter, registers, per-thread private memory, inputs, and

output results.

A thread block is a set of

concurrently executing threads

that can cooperate among

themselves through barrier

synchronization and shared

memory. A thread block has a

block ID within its grid.

A grid is an array of thread

blocks that execute the same

kernel, read inputs from global

memory, write results to global

memory, and synchronize

between dependent kernel calls.

In the CUDA parallel

programming model, each

thread has a per-thread private

memory space used for register

spills, function calls, and C

automatic array variables. Each

thread block has a per-Block

shared memory space used for

inter-thread communication,

data sharing, and result sharing

in parallel algorithms. Grids of

thread blocks share results in

Global Memory space after

kernel-wide global

synchronization. 



CUDA Hierarchy of threads, blocks, and grids, with corresponding

per-thread private, per-block shared, and per-application global

memory spaces.

The Fermi Architecture
GPU = executes grids (16 SMs in total)

SM = executes thread blocks

Group of 32 threads = warp

Each SM has 32 CUDA cores (512 total)

16KB L1 plus 48KB shared or 48KB L1 plus 16KB

16 Load/Store Units

4 Special Function Units

Overall Architecture

4 GPCs

4 SMs per GPC

L2 Cache

Thread engine

Host and memory interfaces

SM Structure

8



Third Generation Streaming

Multiprocessor

The third generation SM introduces several

architectural innovations that make it not only the

most powerful SM yet built, but also the most

programmable and efficient.

512 High Performance CUDA cores

Each SM features 32 CUDA

processors—a fourfold

increase over prior SM

designs. Each CUDA

processor has a fully

pipelined integer arithmetic

logic unit (ALU) and floating

point unit (FPU). Prior GPUs used IEEE 754-1985

floating point arithmetic. The Fermi architecture

implements the new IEEE 754-2008 floating-point

standard, providing the fused multiply-add (FMA)

instruction for both single and double precision

arithmetic. FMA improves over a multiply-add

(MAD) instruction by doing the multiplication and

addition with a single final rounding step, with no

loss of precision in the addition. FMA is more

accurate than performing the operations

separately. GT200 implemented double precision FMA.

In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result,

multi-instruction emulation sequences were required for integer arithmetic. In Fermi, the newly

designed integer ALU supports full 32-bit precision for all instructions, consistent with standard

programming language requirements. The integer ALU is also optimized to efficiently support

64-bit and extended precision operations. Various instructions are supported, including

Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population

count.

16 Load/Store Units

Each SM has 16 load/store units, allowing source and destination addresses to be calculated

for sixteen threads per clock. Supporting units load and store the data at each address to

cache or DRAM. 















 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



















































CUDA Core

Operand Collector

Dispatch Port

Result Queue

FP Unit INT Unit

Fermi Streaming Multiprocessor (SM)

New Features of Fermi

Double Precision Support, Fused Multiply-Add (FMA)

Better Scientific Precision, 8x faster than GT200

32-bit Integer Support (formerly 24 bit via FP mantissa unit)

Configurable 64KB Shared Memory/L1 Cache, 768KB shared read/write L2 with writeback
(GT200 cache was read-only)

Additional ISA support for C++

New Features of Fermi (II)
Unified (40 bit) Addressing Space

Uniform Pointer Manipulation, multiple page sizes

ECC Support

Reliability

Fast Atomic Operations

Shared Data Structures

Improved Scheduling

Dual Warp

Heterogeneous Kernels

GF100 Chip

512 Cores
3B transistors
40nm process

GDDR5 memory
6 memory controllers

4 GPU clusters
“Gigathread” engine

Shared L2 cache

Comparison to Prior GPUs

Functionality

At least one SM disabled on all models

Graded, less expensive, parts with various numbers of SMs and memory
controllers disabled

Higher end Tesla versions have ECC memory enabled, double precision
floating point, limited video out

GF110 (GTX580) revision reduces heat and enables all SMs to operate

GP Clusters

Rasterizer in each GPC

Four streaming multiprocessors (SMs)

16 PolyMorph engines per SM (64 per GPC)

Fixed and configurable logic for tessellation support

Fermi adds tessellation (DX11) support, z-compare and blend raster, better
physics processing, distributed rasterization

Performance Growth of
Shader vs. Geometry

Scalability

Distributed rasterization, L2 shared cache, more compartmentalization
enable easy scaling of processor configurations. GF104 is a consumer-
oriented version of GF100

Discussion

Kepler: NVIDIAs Next Generation CUDA
Compute Architecture
NVIDIA 2012

GK110 Chip
7.1B transistors

1TFLOPS IEEE 64bit

225W power

3X more efficient

28nm process

Designed for Tesla (GPGPU cards)

Chip Architecture
More warps (64 vs 48)

SMX architecture

64K registers/SMX (vs 32k), 15
SMX units

Up to 255 regs/thread

Same 48K shared memory/SMX

Shifts memory model

Comparison to Prior GPUs

SMX Architecture

4 dual-warp schedulers

Double Precision unit per three SP cores

Load/Store and SFU per six cores

Lower clock rate

DP can now issue with other instructions

New ISA Elements
255 regs per thread

More atomic ops

Dynamic parallelism, Hyper-Q, GPU Direct

Shuffle instruction (faster transpose, FFT, etc.)

Dynamic Parallelism

Kernels can now launch other kernels
without CPU interaction

Fluid Flow Multigrid Example

Hyper-Q

Supports up to 32 simultaneous CPU connections

Designed for multi-core shared use of GPU

Previously there was just one work queue

Kepler vs Fermi Work Queue

Grid Management Unit

Dynamic parallelism means
kernels can be launched by the
GPU and the CPU

Requires more complex dispatch
control with pausing

GPU Direct

Inter-GPU communication previously went through CPU

GPU-enhanced clusters need direct link

Also support for PCI-e GPU-GPU communication

Discussion

NVIDIA GeForce GTX980
White Paper 2016

Reduced Power Goal

SMM Similar to Kepler SMX, but more shared memory (64KB vs 48KB),
larger L2 cache (2MB vs 256KB - shifts memory model again), more active
blocks (32 vs 16)

Finer grained power-down control for idle thread engines

Eliminates shared units that bottlenecked scheduler

25% greater die area per SM, 35% performance increase, slightly slower
clock (4%), 2X power efficiency

Power Benchmarks

Compared to GK104

Note: Previous paper was for GK110 Tesla

Chip Architecture

4 GPCs
Each w/ 8 SMMs = 32
Each w/128 cores = 2048 total
2MB shared L2

SMM
64K registers (2M on chip)

256KB

96KB Shared memory

128 cores

4 dual issue schedulers

32 load/store units

iCache

Pascal

Maxwell-like ISA + 16-bit FP (for deep learning)

6 GPCs, each with 10 SMs, Each with 64 cores

= 3840 total

4GB L2 Cache

10.6 TFLOPS (32-bit) 21.6 TFLOPS (16 bit)

NVLink 160 GB/s bidirectional network interface

Die-stack 3D memory (16GB)

Chip Architecture

Comparison

Comparison (2)

Notes

Half the cores/SM but same number of registers

Registers are often the limiting factor in thread count

More SMs and GPC, so more cores, more registers, more warp
schedulers overall

Less sharing, but more local throughput, more parallelism

SM Architecture

Compute Comparison

Note: Pascal has fewer cores/SM

Memory Stack

Memory Stack Photo

Top View

NVLink

Unified Memory

Previously, a CPU had to set up shared data before kernel launch

Pascal adds 49-bit virtual addressing to map all of CPU and GPU space

Also adds automatic bi-directional CPU/GPU page faulting, with thread
suspension

Can now just malloc on both

Compute Preemption

Previously, a CUDA application would monopolize the GPU (no graphics
display)

Pascal adds the ability to shelve a task and run graphics as needed at the
same time

Can now use the same GPU for display and compute

Deep Learning Box

Discussion

Turing GPU Architecture
NVIDIA 2018

Significant Redesign
New emphasis on tensor processing, FP16, Int8, Int4 arithmetic

Unifies multiple memories into a configurable L1 cache

Allows simultaneous issue of Int and FP ops (like Fermi)

Changes in graphics generation (ray tracing and shading) using AI

New memory interface and more NVLink channels

Reduced support for 64 bit FP

SM

SM vs. Pascal

System Comparison

Memory Comparison

New Memory Interface
High speed memory uses wave
shaping to reduce noise

Circuits train on actual conditions
to adapt wave shaping and
filtering

GDDR6 is a graphics-specific
DRAM interface for high
throughput of streaming data

Memory Compression

Compress data for transmission

Increases throughput, especially
for highly compressible graphics
data streams

Necessary to keep up with
processor demand

Tensor Support Comparison

Parallel Graphics Pipes

Hardware Ray Tracing vs. Software

Overall System
4608 CUDA cores/72 SMs

72 RT cores

576 Tensor cores

288 Texture units

12 GDDR6 memory controllers

6.144 MB L2 cache

18.432 MB register file

Chip Parameters

18.6 B transistors

12nm FinFet process

260 Watts

754 mm2 (about 30 x 25 mm)

Stated Performance

Stated Tensor Performance

Discussion

