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Intel 80-core Teraflops Research Chip



Intel Exec Quote

“We can now put 80 cores on a chip.  
We just don’t have any idea of 

what to do with them.” 



Intel MIC (Xeon Phi)
Many Integrated Cores - after Larrabee GPU & 80 core 

Knights Ferry prototype with 32 cores, 1024 bit ring 

Knights Corner product 

50 x86 (P54C) cores, 4-thread, superscalar, in-order 

512 bit SIMD registers 

16x32 bit vectors, gather/scatter/mask 

Programmed with OpenMP, OpenCL, Intel Cilk Plus 

Claim up to 1.2 TFLOPS @ 300W



Knight’s Landing Phi
72 Silvermont Atom cores in 36 tiles 

2-wide OoO issue, 4-way threading, mesh connect 

Two 512-bit vector units 

Each pair shares 1MB cache 

MESIF, directory-based coherence with other tiles 

Up to 215 Watts



Memory

16GB MCDRAM on same carrier (a la Pentium Pro) 

3-modes: All cache, all RAM, part cache part RAM 

Specially allocated in software for critical data 

Other data in slower DDR



Interconnect

Mesh of rings with three modes 

All-to-all: slowest but most general 

Quadrant: Directories for groups of 9 tiles (faster) 

Sub-NUMA: Quadrants are separate NUMA domains that allow explicit 
software optimization for locality (fastest, most programming effort) 

25GB/s Omni-Path external ports



Performance

5X peak DP floating performance of Knights Corner (implies about 
6TFLOPS) 

At 200W, gives about 30GFLOPS/W 

Knights Mill variant introduced 2017 with optimizations for machine learning



Synergistic Processing in Cell’s 
Multicore Architecture
Gschwind, et. al.



Cell Broadband Engine Overview

Heteogeneous Multicore Processor 

One Power-PC-based control processor (PPE) 

Eight “Synergistic” Vector-only Processors (SPE) 

Interconnect Bus (EIB) 

Common address space



CBE Diagram

Overview of the Cell Broadband Engine
architecture

As Figure 1 illustrates, the Cell BE imple-
ments a single-chip multiprocessor with nine
processors operating on a shared, coherent sys-
tem memory. The function of the processor
elements is specialized into two types: the
Power processor element (PPE) is optimized for
control tasks and the eight synergistic processor
elements (SPEs) provide an execution envi-
ronment optimized for data processing. Fig-
ure 2 is a die photo of the Cell BE.

The design goals of the SPE and its archi-
tectural specification were to optimize for a
low complexity, low area implementation. 

The PPE is built on IBM’s 64-bit Power
Architecture with 128-bit vector media exten-

sions5 and a two-level on-chip cache hierar-
chy. It is fully compliant with the 64-bit Power
Architecture specification and can run 32-bit
and 64-bit operating systems and applications.   

The SPEs are independent processors, each
running an independent application thread.
The SPE design is optimized for computa-
tion-intensive applications. Each SPE includes
a private local store for efficient instruction
and data access, but also has full access to the
coherent shared memory, including the mem-
ory-mapped I/O space. 

Both types of processor cores share access
to a common address space, which includes
main memory, and address ranges corre-
sponding to each SPE’s local store, control reg-
isters, and I/O devices. 
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Figure 1. Cell system architecture. The Cell Broadband Engine Architecture integrates a Power processor element (PPE) and
eight synergistic processor elements (SPEs) in a unified system architecture. The PPE is based on the 64-bit Power Architec-
ture with vector media extensions and provides common system functions, while the SPEs perform data-intensive process-
ing. The element interconnect bus connects the processor elements with a high-performance communication subsystem.



PPE Functionality

Runs Operating System 

General Purpose (scalar heavy) computation 

Organizes structure of global address space 

Coordinates distribution and collection of data



SPE Functionality

Vector/SIMD Instruction Set 

128 128-bit Registers 

Register Contents are polymorphic 

256 KB Local Store 

2-way Specialized Pipeline



SPE Programming (I)
SPE has no native scalar processing 

No scalar registers 

Registers can hold vectors of ints and floats 

Instead, SPE Scalar processing is folded into vector processing 

Manual alignment via software 

Aim is for compiler to pick appropriate alignment



SPE Programming (II)
Scalar Layering 

Sequential scalar operations on a vector machine 

Large register file can help (more scratch space) 

Data-parallel conditional execution 

Branches expensive in SPEs 

Minimal Branch Prediction (Hints) 

Convert if-then to vector select



Scalar Layering

aspects: scalar operations mapping onto the
data-parallel execution engines and data man-
agement to align, extract, and insert data on
memory accesses using the memory interface.

To illustrate how scalar layering works, con-
sider the operation of SIMD data-parallel exe-
cution pipelines as described earlier on a
four-element vector consisting of one word

each. Figure 4a illustrates how a processor exe-
cutes a SIMD instruction by performing the
same operation—in parallel—on each ele-
ment. In the example, the SIMD instruction
sources two vector registers containing ele-
ments x0, x1, x2, and x3 and y0, y1, y2, and y3,
respectively, and yields four results: z0 = x0 −
y0; z1 = x1 − y1; z2 = x2 − y2; and z3 = x3 − y3 in
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Figure 4. How scalar layering works. Scalar layering aligns scalar data under compiler control. (a) SIMD oper-
ation, (b) alignment mismatch of scalar elements in vector registers without data alignment, (c) operations
with scalar layering, compiler-managed scalar extraction, and data alignment, and (d) subvector write using
optimized read-modify-write sequence.



Data-parallel 
Selection

Data-parallel conditional execution
Many legacy architectures that focus on

scalar computation emphasize the use of con-
ditional test and branch to select from possi-
ble data sources. Instead, following the focus
on PDPC, we made data-parallel select the
preferred method for implementing condi-
tional computation. The data-parallel select
instruction takes two data inputs and a con-
trol input (all stored in the unified register file)
and independently selects one of the two data
inputs for each vector slot under the control
of the select control input. Using data-paral-
lel select to compute the result of condition-
al program flow integrates conditional
operations into SIMD-based computation by
eliminating the need to convert between scalar
and vector representation. The resulting vec-

torized code thus contains conditional expres-
sions, which in turn lets the SPU execute con-
ditional execution sequences in parallel.

As Figure 6 shows, to use conditional
branch operations, the compiler must trans-
late a simple element-wise data selection into
a sequence of scalar conditional tests, each fol-
lowed by a data-dependent branch. In addi-
tion to the sequential schedule, each
individual branch is data dependent and many
branches are prone to misprediction by even
the most sophisticated dynamic prediction
algorithm. This results in a long latency con-
trol-flow dominated instruction schedule as
shown in Figure 6b, exacerbated by a signifi-
cant penalty for each mispredicted branch.
The control-dominated test-and-branch
sequence must be embedded between code to
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for (i = 0; i< VL; i++)
  if (a[i]>b[i])
   m[i] = a[i]*2;
 else
   m[i] = b[i]*3;

(a)

a[0]>b[0]

m[0]=a[0]*2;

a[1]>b[1]

m[0]=b[0]*3;

m[2]=a[2]*2; m[2]=b[2]*2;

m[3]=b[3]*3;m[3]=a[3]*2

a[3]>b[3]

m[1]=b[1]*3;m[1]=a[1]*2;

a[2]>b[2]

(b)

(c)

s[0]=a[0]>b[0]

a'[0]=a[0]*2;

m[0]=s[0]?
a'[0]:b'[0]

b'[0]=b[0]*3;

s[1]=a[1]>b[1]

a'[1]=a[1]*1; b'[1]=b[1]*3;

m[1]=s[1]?
a'[1]:b'[1]

s[2]=a[2]>b[2]

a'[2]=a[2]*2; b'[2]=b[2]*2;

m[2]=s[2]?
a'[2]:b'[2]

s[3]=a[3]>b[3]

a'[3]=a[3]*3; b'[2]=b[3]*3;

m[3]=s[3]?
a'[3]:b'[3]

Figure 6. The use of data-parallel select to exploit data parallelism. (a) Conditional operations are integrated into SIMD-based
computation. (b) Using traditional code generation techniques, the source code is turned into a sequence of test and condi-
tional branch instructions for each vector element.  High branch misprediction rates of data-dependent branches and data
conversion between vector and scalar representations incur long schedules.  (c) Exploiting data-parallel conditional execution
with data-parallel select allows the processing of conditional operations concurrently on multiple vector elements. In addition
to exploiting data parallelism, data-parallel select purges hard-to-predict data-dependent branches from the instruction mix.



SPE Arithmetic and Local Store

Emphasis on Non-saturating integer and single-precision FP 

Local Store is NOT a cache 

Simpler Hardware 

Deterministic Timing 

YOU have to perform the DMAs yourself (explicit prefetch for next thread) 

Local Store holds code, too!



SPE Pipelines

Dual-pipelines, statically scheduled 

Even = Integer and FP operations 

Odd = Memory, Branch, and Data Formatting 

Explicit branch prefetcher instruction



SPE Pipelines

reexecute a recovery sequence in the event of
unaligned accesses. However, every unaligned
access incurs a substantial performance penalty.
Because both these solutions have high penal-
ties, we opted to use a compiler-aided alignment
policy. When the compiler cannot determine
alignment statically, the compiler generates
explicit dual-load and data-merge sequences for
vector accesses. Most vector accesses are part of
longer loops, so the actual throughput of load
operations approaches one load per quadword
loaded for common unit stride streams, since
two iterations can share each load operation as
an iteration-carried dependence. Compilation
techniques to exploit this feature are available
in the literature.7

The local store also serves as storage for pro-
gram instructions that the SPU will execute
(see Figure 2). The SPU fetches instructions
with 128-byte accesses from a wide fetch port,
delivering 32 instructions per access. It stores
instructions in instruction line buffers and
delivers them to the execution pipelines.
Exploiting wide accesses for both instruction
and data accesses decreases the necessary
accesses and improves power efficiency.
Instruction and data accesses and the SMF

controller share a single SRAM port, which
improves memory density and reduces the
latency for local store access.

Statically scheduled instruction-level
parallelism

In the Cell BE, the SPU front end imple-
ments statically scheduled instruction fetch
to reduce the cost of dynamic instruction
scheduling hardware. However, the SPU
architecture is not limited to implementations
using static scheduling.

The SPU architecture is bundle-oriented
and supports the delivery of up to two instruc-
tions per cycle to the data parallel back end.
All instructions respect their dependencies to
ensure sequential program semantics for
future architectural compatibility and to
ensure good code density.

The use of compiler-generated bundling
simplifies instruction routing logic. By relying
on compile-time scheduling to optimize
instruction layout and encode instruction
streams in bundles, the SPU eliminates much
of the overhead of dynamic scheduling. As Fig-
ure 7 shows, instruction execution resources
fall into one of two execution complexes: odd
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Figure 7. Microarchitecture for the SPE pipeline. The SPE architecture is bundle-oriented, supporting the
delivery of up to two instructions per cycle to the data-parallel back end.  The architecture supports very high
frequency operation with comparatively modest pipeline depths by reducing architectural complexity.



Summary of Techniques
Turn scalar operations into shuffles 

Turn branches into selects (when possible) 

Plan local store resources carefully 

Balance your pipeline allocations carefully 

The point: 

Hardware is simpler, but 

Much more is exposed to the software



Single Instruction Multiple Data
Obvious and simple rarely is either



Bit-Serial SIMD: CM-1 (&2), late 1980’s



Sort of SIMD: CM-5 (SPMD), early 1990’s



Maspar (late 1980s)

Grew out of project at Digital 
Equipment Corp 

32 4-bit PEs per chip 

8-way grid interconnect 

Up to 16K processors



Many others of that ilk
Goodyear Staran, MPP, ASPRO (bit-serial SIMD) 

CMU/Intel Warp and iWarp systolic arrays 

nCUBE (SPMD) 

Inmos Transputer (CSP array) 

UMass/Hughes IUA  

heterogeneous bit-serial SIMD, 32-bit SPMD, 32-bit CC-NUMA SMP



Why SIMD?

Conceptually simple form of parallelism 

Parallel vector operations common in mathematics 

Also common in image processing, signal processing, database, etc. 

Serial program with parallel data type and operations 

Efficient silicon implementation (many ALUs under a single control unit)



Why not SIMD?
Size of problem almost never matches hardware 

If smaller, then a fraction of the array is idle 

If larger, then the array has to be virtualized 

Virtualization has to swap contexts 

Handle communication across virtual tiles boundaries 

More fractional arrays at edge of virtual array



Why not SIMD?
Branches have to serialize — times are additive 

IF (A < B) implies elements that meet the condition take the branch, those that fail 
take the ELSE clause 

Only one source of instructions for all elements 

Select A<B, issue instructions 

Select A>=B, issue instructions 

Multiway branches further divide the elements



Why not SIMD?
Instruction distribution is hard to scale up 

Assumes a globally synchronous clock 

Broadcast has to be balanced for simultaneous arrival 

Instruction generation takes multiple operations, so has to run faster than 
consumption, which is simpler 

Makes clock scaling difficult 

Scaling in size consumes much more power



Why not SIMD?

Collective operations can be slow 

Need feedback from computations for global branches 

Fan-in from thousands to millions of elements is a multi-stage process (can 
be pipelined but doesn’t hide latency) 

Array either sits idle during collective, or control is much more complex



Why not SIMD?

Context switching is expensive 

Elements typically lack enough space to hold multiple contexts 

Entire array has massive amount of data 

Switching moves whole context out, new context in 

Array is idle for long period during context switch



Why not SIMD?
Can only address some issues by multithreading 

Hide collective delay, hide issue latency 

Local expansion of instructions 

Allows asynchronous clocking, communication 

Needs rate buffers between asynchronous sections 

More complex hardware, fewer elements 

Optimal use exposes threading in programming model



GPU Architecture
Not just for graphics any more



Fermi: NVIDIA’s Next Generation CUDA 
Compute Architecture
NVIDIA 2009



CUDA Programs
Kernel = Parallel CUDA Program 

Thread = basic unit of processing 

operates on Kernels 

Private Local Memory 
Thread Block 

Set of threads 

Shared Memory between threads 

Grid 

Array of Thread Blocks 

Shared Global Memory
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

A Quick Refresher on CUDA 

CUDA is the hardware and software architecture that enables NVIDIA GPUs to execute 

programs written with C, C++, Fortran, OpenCL, DirectCompute, and other languages. A 

CUDA program calls parallel kernels.  A kernel executes in parallel across a set of parallel 

threads.  The programmer or compiler organizes these threads in thread blocks and grids of 

thread blocks.  The GPU instantiates a kernel program on a grid of parallel thread blocks.  

Each thread within a thread block executes an instance of the kernel, and has a thread ID 

within its thread block, program counter, registers, per-thread private memory, inputs, and 

output results. 

A thread block is a set of 

concurrently executing threads 

that can cooperate among 

themselves through barrier 

synchronization and shared 

memory.  A thread block has a 

block ID within its grid.   

A grid is an array of thread 

blocks that execute the same 

kernel, read inputs from global 

memory, write results to global 

memory, and synchronize 

between dependent kernel calls. 

In the CUDA parallel 

programming model, each 

thread has a per-thread private 

memory space used for register 

spills, function calls, and C 

automatic array variables.  Each 

thread block has a per-Block 

shared memory space used for 

inter-thread communication, 

data sharing, and result sharing 

in parallel algorithms. Grids of 

thread blocks share results in 

Global Memory space after 

kernel-wide global 

synchronization.  

  

CUDA Hierarchy of threads, blocks, and grids, with corresponding 

per-thread private, per-block shared, and per-application global 

memory spaces. 

 



The Fermi Architecture
GPU = executes grids (16 SMs in total) 

SM = executes thread blocks 

Group of 32 threads = warp 

Each SM has 32 CUDA cores (512  total) 

16KB L1 plus 48KB shared or 48KB L1 plus 16KB 

16 Load/Store Units 

4 Special Function Units



Overall Architecture

4 GPCs 

4 SMs per GPC 

L2 Cache 

Thread engine 

Host and memory interfaces



SM Structure
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

Third Generation Streaming 

Multiprocessor  

The third generation SM introduces several 

architectural innovations that make it not only the 

most powerful SM yet built, but also the most 

programmable and efficient. 

512 High Performance CUDA cores 

Each SM features 32 CUDA 

processors—a fourfold 

increase over prior SM 

designs.  Each CUDA 

processor has a fully 

pipelined integer arithmetic 

logic unit (ALU) and floating 

point unit (FPU). Prior GPUs used IEEE 754-1985 

floating point arithmetic.  The Fermi architecture 

implements the new IEEE 754-2008 floating-point 

standard, providing the fused multiply-add (FMA) 

instruction for both single and double precision 

arithmetic.  FMA improves over a multiply-add 

(MAD) instruction by doing the multiplication and 

addition with a single final rounding step, with no 

loss of precision in the addition.  FMA is more 

accurate than performing the operations 

separately. GT200 implemented double precision FMA. 

In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result, 

multi-instruction emulation sequences were required for integer arithmetic.  In Fermi, the newly 

designed integer ALU supports full 32-bit precision for all instructions, consistent with standard 

programming language requirements.  The integer ALU is also optimized to efficiently support 

64-bit and extended precision operations. Various instructions are supported, including 

Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population 

count. 

16 Load/Store Units  

Each SM has 16 load/store units, allowing source and destination addresses to be calculated 

for sixteen threads per clock. Supporting units load and store the data at each address to 

cache or DRAM. 

  
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New Features of Fermi

Double Precision Support, Fused Multiply-Add (FMA) 

Better Scientific Precision, 8x faster than GT200 

32-bit Integer Support (formerly 24 bit via FP mantissa unit) 

Configurable 64KB Shared Memory/L1 Cache, 768KB shared read/write L2 with writeback 
(GT200 cache was read-only) 

Additional ISA support for C++



New Features of Fermi (II)
Unified (40 bit) Addressing Space 

Uniform Pointer Manipulation, multiple page sizes 

ECC Support 

Reliability 

Fast Atomic Operations 

Shared Data Structures 

Improved Scheduling 

Dual Warp 

Heterogeneous Kernels



GF100 Chip

512 Cores 
3B transistors 
40nm process 

GDDR5 memory 
6 memory controllers 

4 GPU clusters 
“Gigathread” engine 

Shared L2 cache



Comparison to Prior GPUs



Functionality

At least one SM disabled on all models 

Graded, less expensive, parts with various numbers of SMs and memory 
controllers disabled 

Higher end Tesla versions have ECC memory enabled, double precision 
floating point, limited video out 

GF110 (GTX580) revision reduces heat and enables all SMs to operate



GP Clusters

Rasterizer in each GPC 

Four streaming multiprocessors (SMs) 

16 PolyMorph engines per SM (64 per GPC) 

Fixed and configurable logic for tessellation support 

Fermi adds tessellation (DX11) support, z-compare and blend raster, better 
physics processing, distributed rasterization



Performance Growth of 
Shader vs. Geometry



Scalability

Distributed rasterization, L2 shared cache, more compartmentalization 
enable easy scaling of processor configurations. GF104 is a consumer-
oriented version of GF100



Discussion



Kepler: NVIDIAs Next Generation CUDA 
Compute Architecture
NVIDIA 2012



GK110 Chip
7.1B transistors 

1TFLOPS IEEE 64bit 

225W power 

3X more efficient 

28nm process 

Designed for Tesla (GPGPU cards)



Chip Architecture
More warps (64 vs 48) 

SMX architecture 

64K registers/SMX (vs 32k), 15 
SMX units 

Up to 255 regs/thread 

Same 48K shared memory/SMX 

Shifts memory model



Comparison to Prior GPUs



SMX Architecture

4 dual-warp schedulers 

Double Precision unit per three SP cores 

Load/Store and SFU per six cores 

Lower clock rate 

DP can now issue with other instructions



New ISA Elements
255 regs per thread 

More atomic ops 

Dynamic parallelism, Hyper-Q, GPU Direct 

Shuffle instruction (faster transpose, FFT, etc.)



Dynamic Parallelism

Kernels can now launch other kernels 
without CPU interaction



Fluid Flow Multigrid Example



Hyper-Q

Supports up to 32 simultaneous CPU connections 

Designed for multi-core shared use of GPU 

Previously there was just one work queue



Kepler vs Fermi Work Queue



Grid Management Unit

Dynamic parallelism means 
kernels can be launched by the 
GPU and the CPU 

Requires more complex dispatch 
control with pausing



GPU Direct

Inter-GPU communication previously went through CPU 

GPU-enhanced clusters need direct link 

Also support for PCI-e GPU-GPU communication



Discussion



NVIDIA GeForce GTX980
White Paper 2016



Reduced Power Goal

SMM Similar to Kepler SMX, but more shared memory (64KB vs 48KB), 
larger L2 cache (2MB vs 256KB - shifts memory model again), more active 
blocks (32 vs 16) 

Finer grained power-down control for idle thread engines 

Eliminates shared units that bottlenecked scheduler 

25% greater die area per SM, 35% performance increase, slightly slower 
clock (4%), 2X power efficiency



Power Benchmarks



Compared to GK104

Note: Previous paper was for GK110 Tesla



Chip Architecture

4 GPCs 
Each w/ 8 SMMs = 32 
Each w/128 cores = 2048 total 
2MB shared L2 



SMM
64K registers (2M on chip) 

256KB 

96KB Shared memory 

128 cores 

4 dual issue schedulers 

32 load/store units 

iCache



Pascal

Maxwell-like ISA + 16-bit FP (for deep learning) 

6 GPCs, each with 10 SMs, Each with 64 cores 

= 3840 total 

4GB L2 Cache 

10.6 TFLOPS (32-bit) 21.6 TFLOPS (16 bit) 

NVLink 160 GB/s bidirectional network interface 

Die-stack 3D memory (16GB)



Chip Architecture



Comparison



Comparison (2)



Notes

Half the cores/SM but same number of registers 

Registers are often the limiting factor in thread count 

More SMs and GPC, so more cores, more registers, more warp 
schedulers overall 

Less sharing, but more local throughput, more parallelism



SM Architecture



Compute Comparison

Note: Pascal has fewer cores/SM



Memory Stack



Memory Stack Photo



Top View



NVLink



Unified Memory

Previously, a CPU had to set up shared data before kernel launch 

Pascal adds 49-bit virtual addressing to map all of CPU and GPU space 

Also adds automatic bi-directional CPU/GPU page faulting, with thread 
suspension 

Can now just malloc on both



Compute Preemption

Previously, a CUDA application would monopolize the GPU (no graphics 
display) 

Pascal adds the ability to shelve a task and run graphics as needed at the 
same time 

Can now use the same GPU for display and compute



Deep Learning Box



Discussion



Turing GPU Architecture
NVIDIA 2018



Significant Redesign
New emphasis on tensor processing, FP16, Int8, Int4 arithmetic 

Unifies multiple memories into a configurable L1 cache 

Allows simultaneous issue of Int and FP ops (like Fermi) 

Changes in graphics generation (ray tracing and shading) using AI 

New memory interface and more NVLink channels 

Reduced support for 64 bit FP



SM



SM vs. Pascal



System Comparison



Memory Comparison



New Memory Interface
High speed memory uses wave 
shaping to reduce noise 

Circuits train on actual conditions 
to adapt wave shaping and 
filtering 

GDDR6 is a graphics-specific 
DRAM interface for high 
throughput of streaming data



Memory Compression

Compress data for transmission 

Increases throughput, especially 
for highly compressible graphics 
data streams 

Necessary to keep up with 
processor demand



Tensor Support Comparison



Parallel Graphics Pipes



Hardware Ray Tracing vs. Software



Overall System
4608 CUDA cores/72 SMs 

72 RT cores 

576 Tensor cores 

288 Texture units 

12 GDDR6 memory controllers 

6.144 MB L2 cache 

18.432 MB register file



Chip Parameters

18.6 B transistors 

12nm FinFet process 

260 Watts 

754 mm2 (about 30 x 25 mm)



Stated Performance



Stated Tensor Performance



Discussion


