
Shared Memory Parallel Programming
Is it really easier?

Based on Chapter 8 of Greg Pfister’s
text, “In Search of Clusters”

4-point Stencil

Avg

close_enough = epsilon;
repeat

max_change = 0;
for y = 2 to N-1

for x = 2 to N-1
old_value = v[x,y];
// replace each value with avg of neighbors
v[x,y] = (v[x-1,y]+v[x+1,y]+v[x,y-1]+v[x,y+1])/4;
// keep max_change at largest absolute change seen
max_change = max(max_change, abs(old_value-v[x,y]));

end for
end for

until max_change < close_enough

All we do is...

Use maximum parallelism -- assume one node per array element

Make the array and indexes shared

Everything else stays private

Change the for statements to forall

close_enough = epsilon;
shared v[], x, y, max_change;
private default;
repeat

max_change = 0;
forall y = 2 to N-1

forall x = 2 to N-1
old_value = v[x,y];
// replace each value with avg of neighbors
v[x,y] = (v[x-1,y]+v[x+1,y]+v[x,y-1]+v[x,y+1])/4;
// keep max_change at largest absolute change seen
max_change = max(max_change, abs(old_value-v[x,y]));

end forall
end forall

until max_change < close_enough

That was easy...

forall just magically keeps everything straight

But it doesn’t work. At least not reliably.

Why?

That was easy...

forall just magically keeps everything straight

But it doesn’t work. At least not reliably.

Why?

Because there is a race on access to max_change, which can cause
termination before every max_change < epsilon

Need to add a lock

close_enough = epsilon;
lock max_change_lock;
shared v[], x, y, max_change;
private default;
repeat

max_change = 0;
forall y = 2 to N-1

row_max = 0;
forall x = 2 to N-1

old_value = v[x,y];
// replace each value with avg of neighbors
v[x,y] = (v[x-1,y]+v[x+1,y]+v[x,y-1]+v[x,y+1])/4;
// keep max_change at largest absolute change seen
acquire(max_change_lock);
max_change = max(max_change, abs(old_value-v[x,y]));
release(max_change_lock);

 end forall
end forall

until max_change < close_enough

That wasn’t so hard...

But it doesn’t actually improve performance

Why not?

That wasn’t so hard...

But it doesn’t actually improve performance

Why not?

Because there is very little work to be done outside of the lock

The lock itself is slow -- it has to go all the way out through the memory
hierarchy as an atomic transaction

Serialization

Serialization

P1 P2 P3 P4 P5 P6Parallel Work

Serial Work

Waiting

Aggregation

Need to do more work in parallel sections

Create larger chunks by reducing parallelism

Make inner loop serial

Only check max_change for each row

close_enough = epsilon;
lock max_change_lock;
shared v[], y, max_change;
private default;
repeat

max_change = 0;
forall y = 2 to N-1

row_max = 0;
for x = 2 to N-1

old_value = v[x,y];
// replace each value with avg of neighbors
v[x,y] = (v[x-1,y]+v[x+1,y]+v[x,y-1]+v[x,y+1])/4;
row_max = max(row_max, abs(old_value-v[x,y]));

 end for
// keep max_change at largest absolute change seen
acquire(max_change_lock);
max_change = max(max_change, row_max));
release(max_change_lock);

end forall
until max_change < close_enough

Good performance, but...
Results vary from one run to the next

Why?

Good performance, but...
Results vary from one run to the next

Why? Because serial processor speed varies.

People don’t like it when computers give random
answers, even if they are all technically correct

Obtaining consistency

Lock all three rows

Process entire row

Release rows

Processors two rows away run in parallel

What’s the danger in this?

We can lock rows to avoid the race this way:
acquire(row_lock[y-1]);
acquire(row_lock[y]);
acquire(row_lock[y+1]);

But this slight variation will deadlock:
acquire(row_lock[y]);
acquire(row_lock[y+1]);
acquire(row_lock[y-1]);

Why? It can result in a cycle.
Note that if the problem wrapped at the boundaries , it could deadlock even with the version
above -- cycle is created at top and bottom rows.

Alternation

Alternate between processing red and black rows

Something old...

Something new (something borrowed from Big Blue)

Cells see one old, two half-old, one new value

How about we arrange it instead like this...

Checkerboarding

Alternate between processing red and black squares.
Everyone gets an old value from all 4 neighbors.

Consistency at last...
But, it’s not the same answer as the serial version

Why?

But, it’s not the same answer as the serial version

Why?

Because the serial version used two new and two old values in each
position

Consistency at last...

Parallel Programming Classic Error

Solve a different problem that’s easier to parallelize

Serial is Gauss-Seidel

Parallel is Gauss-Jacobi

Give different, correct results

Sometimes they don’t converge, but for different inputs

Wavefront

Processing diagonals gives Gauss-Seidel in parallel!
But how much parallelism do we get?

It Varies...

Very little at start and end, but a lot in the middle

And we still have to lock max_change between small chunks of processing

Better aggregate again -- let processors compute local maxima over a
square tile, and we’ll serially merge a bunch of them (say a few hundred)

Now it runs pretty fast on a bunch of processors, compared to running on
one

But...
It’s still slower than the serial version

Why?

But...
It’s still slower than the serial version

Why?

Cache locality!

Wavefronting is terrible for cache locality, so we lose a factor of 100

Coherence traffic also remains high

It’s a more complex algorithm

Blocking

Aggregate in a cache-sensitive way

Process a rectangular chunk of the array in each processor, with
dimensions that maximize cache locality, and reduce coherence traffic

But, this is microarchitecture-dependent

Want to hide it in the compiler -- can we?

Maybe, but may take more language extensions or programming effort

And the Level of Parallelism Still Varies

Load balancing

Set up work queue, and pass out equal segments of successive diagonals
to processors

Now we get better performance than serial, same answer, and good
utilization

Except that...

The work queue is shared (i.e., locked) data structure

Here comes serialization again

Need to have processors do a lot of work between queue accesses

One processor manages the queue (bottleneck)

Neglected to note that global queues are actually everywhere -- forall

With more work...

We can solve these problems too

But what do you think?

Is shared memory really easier than other parallel programming models?

Or just a case of Pavlov’s programmers?

Why do we do it?

Because it’s easy to build a shared memory processor -- just put multiple
CPUs on a bus

And the hardware people are happy to let the software people then spend
countless hours playing Whack-A-Mole to try to get performance out of it

It’s simple enough in concept to be grasped by pointy-haired bosses

What About Message Passing?

Ah, the joys of network-topology dependent algorithms

Topomania

There is no Universal Parallel Model

Every parallel architecture defines a new algorithmic model

Consider a histogram operation on minor variants of a vector-array
processor

Portability is nonexistent

Can’t grow code base

More Shared Memory
Beyond the bus

Parallelism Approaches

Scale up: ILP (super pipeline, superscalar), threading, clock, short vector

Scale out: Multiple cores, multiple multi-core nodes

Vector/Streaming: GPU, tensor units, encryption units

Heterogeneous: Combinations of approaches

Parallel Programming Abstractions

Shared memory: OpenMP, pthreads, Java threads, etc. (one address space)

Distributed memory: MPI, RPC (separate address spaces)

Vector: Parallel operators, CUDA, map-reduce, etc. (one address space)

Shared Memory Scaling

Shared memory is easy for a small number of CPUs

Place them on a bus and use MESIF or similar protocol

Bus quickly saturates, performance decreases for more than about 8
processors

How to extend shared memory to greater numbers?

Assumes this abstraction is a good idea for scaling out

Directory-Based Coherence

Full Map

Each block of DRAM (cache line unit) is extended

Extension bits correspond to processors

A 1 indicates the processor’s cache has a copy, a 0 means it doesn’t

Usually some fixed number of bits (processors) per block

Directory-Based Coherence
Partial Map

Each block of DRAM (cache line unit) is extended

Extension is groups of bits, each representing a processor number

Processor numbers are entered in the list when they request a copy

Usually some fixed number of sharing entries (e.g., 4 or 8)

When sharing exceeds the available list length, default to broadcast

Directory-Based Coherence
Chained Map

Each block of DRAM (cache line unit) is extended

Extension is a processor number for the “owner” (first request)

Each cache line is extended with a next processor number or null, and the
owner processor number

Changes are sent to the owner, then forwarded down the chain (linked list)

Protocol for updating the chain for a new owner, or deletions from list

Breakout Discussion

What are the pros and cons of each directory paradigm?
(full map, partial map, chained)

Discuss in groups, send me an email with your names and notes

Stanford DASH
(Lenoski, ISCA 90)

Local cluster of cache coherent, bus snooping
processors
Cluster caches are shared via cache to cache
transfers
Connect via directory and extra cache to
network
Directory keeps track of sharing, manages
messages for coherence

Node Architecture

Local main memory and disk, level 1 and 2
caches

Separate mesh-connected networks for
memory request and replies (topology not
important)

Directory Board

Directory controller -- sends requests out

Pseudo-CPU -- handles outside requests

Reply controller -- receives reply to request
and passes to local node

Release Consistency
Weaker than sequential consistency

Acquire and release operations

An acquire must complete before subsequent reads and writes (everybody sees the
acquire consistently)

Non-owners can observe changes to protected variables, assuming they are aware
of the critical section

Before release all write (and read) operations must complete -- many remote
operations will already be done

Types of Directory Clusters

Local: Cluster from which a request is issued

Home: Cluster holding the main memory location in the global address
space

Remote: Any other cluster

Remote Memory States
Uncached remote -- not remotely cached

Home is owner

Shared remote -- clean, cached remote

Home is owner

Dirty remote -- one remote copy is dirty

Remote is owner

Read Request

Read Exclusive
Request

Scaling

Full map directory limited to size of bit vector representing clusters

Each memory block extended with map vector

Partial map directory defaults to broadcast when more clusters are present

Memory block has short list of sharing clusters

Chained map directory uses linked structures, has variable access times,
complex ownership protocol

Distributed Memory
Sharing in local cluster but not beyond

High performance network for memory to memory data movement

Infiniband, Myrinet, custom

Special network stack for low latency

Programmer manages data placement and messaging for sharing
copies

Often requires new algorithms

Images: Lawrence Livermore National Laboratory

Hybrid

Modern nodes have up to 24 cores per socket, often dual sockets, with
shared memory

Local computations (e.g., 96 threads) communicate through shared
memory

Nonlocal communication uses message passing (e.g., MPI)

Partitioned global address space (PGAS languages) try to elevate the
abstraction by adding information about locality, partitioning, communication

