
Shared Memory Parallel Programming
Is it really easier?

Based on Chapter 8 of Greg Pfister’s 
text, “In Search of Clusters”
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close_enough = epsilon;
repeat

max_change = 0;
for y = 2 to N-1

for x = 2 to N-1
old_value = v[x,y];
// replace each value with avg of neighbors
v[x,y] = (v[x-1,y]+v[x+1,y]+v[x,y-1]+v[x,y+1])/4;
// keep max_change at largest absolute change seen
max_change = max(max_change, abs(old_value-v[x,y]));

end for
end for

until max_change < close_enough



All we do is...

Use maximum parallelism -- assume one node per array element 

Make the array and indexes shared 

Everything else stays private 

Change the for statements to forall



close_enough = epsilon;
shared v[], x, y, max_change;
private default;
repeat

max_change = 0;
forall y = 2 to N-1

forall x = 2 to N-1
old_value = v[x,y];
// replace each value with avg of neighbors
v[x,y] = (v[x-1,y]+v[x+1,y]+v[x,y-1]+v[x,y+1])/4;
// keep max_change at largest absolute change seen
max_change = max(max_change, abs(old_value-v[x,y]));

end forall
end forall

until max_change < close_enough



That was easy...

forall just magically keeps everything straight 

But it doesn’t work.  At least not reliably. 

Why?



That was easy...

forall just magically keeps everything straight 

But it doesn’t work.  At least not reliably. 

Why? 

Because there is a race on access to max_change, which can cause 
termination before every max_change < epsilon 

Need to add a lock



close_enough = epsilon;
lock max_change_lock;
shared v[], x, y, max_change;
private default;
repeat

max_change = 0;
forall y = 2 to N-1

row_max = 0;
forall x = 2 to N-1

old_value = v[x,y];
// replace each value with avg of neighbors
v[x,y] = (v[x-1,y]+v[x+1,y]+v[x,y-1]+v[x,y+1])/4;
// keep max_change at largest absolute change seen
acquire(max_change_lock);
max_change = max(max_change, abs(old_value-v[x,y]));
release(max_change_lock);

  end forall
end forall

until max_change < close_enough



That wasn’t so hard...

But it doesn’t actually improve performance 

Why not?



That wasn’t so hard...

But it doesn’t actually improve performance 

Why not? 

Because there is very little work to be done outside of the lock 

The lock itself is slow -- it has to go all the way out through the memory 
hierarchy as an atomic transaction 

Serialization



Serialization
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Serial Work

Waiting



Aggregation

Need to do more work in parallel sections 

Create larger chunks by reducing parallelism 

Make inner loop serial 

Only check max_change for each row



close_enough = epsilon;
lock max_change_lock;
shared v[], y, max_change;
private default;
repeat

max_change = 0;
forall y = 2 to N-1

row_max = 0;
for x = 2 to N-1

old_value = v[x,y];
// replace each value with avg of neighbors
v[x,y] = (v[x-1,y]+v[x+1,y]+v[x,y-1]+v[x,y+1])/4;
row_max = max(row_max, abs(old_value-v[x,y]));

  end for
// keep max_change at largest absolute change seen
acquire(max_change_lock);
max_change = max(max_change, row_max));
release(max_change_lock);

end forall
until max_change < close_enough



Good performance, but...
Results vary from one run to the next 

Why?



Good performance, but...
Results vary from one run to the next 

Why? Because serial processor speed varies.

People don’t like it when computers give random 
answers, even if they are all technically correct



Obtaining consistency

Lock all three rows 

Process entire row 

Release rows 

Processors two rows away run in parallel 

What’s the danger in this?



We can lock rows to avoid the race this way:
acquire(row_lock[y-1]);
acquire(row_lock[y]);
acquire(row_lock[y+1]);

But this slight variation will deadlock:
acquire(row_lock[y]);
acquire(row_lock[y+1]);
acquire(row_lock[y-1]);

Why? It can result in a cycle.  
Note that if the problem wrapped at the boundaries , it could deadlock even with the version 
above -- cycle is created at top and bottom rows.



Alternation

Alternate between processing red and black rows



Something old...

Something new (something borrowed from Big Blue) 

Cells see one old, two half-old, one new value 

How about we arrange it instead like this...



Checkerboarding

Alternate between processing red and black squares. 
Everyone gets an old value from all 4 neighbors.



Consistency at last...
But, it’s not the same answer as the serial version 

Why?



But, it’s not the same answer as the serial version 

Why? 

Because the serial version used two new and two old values in each 
position

Consistency at last...



Parallel Programming Classic Error

Solve a different problem that’s easier to parallelize 

Serial is Gauss-Seidel 

Parallel is Gauss-Jacobi 

Give different, correct results 

Sometimes they don’t converge, but for different inputs



Wavefront

Processing diagonals gives Gauss-Seidel in parallel!  
But how much parallelism do we get?



It Varies...

Very little at start and end, but a lot in the middle 

And we still have to lock max_change between small chunks of processing 

Better aggregate again -- let processors compute local maxima over a 
square tile, and we’ll serially merge a bunch of them (say a few hundred) 

Now it runs pretty fast on a bunch of processors, compared to running on 
one 



But...
It’s still slower than the serial version 

Why?



But...
It’s still slower than the serial version 

Why? 

Cache locality! 

Wavefronting is terrible for cache locality, so we lose a factor of 100 

Coherence traffic also remains high 

It’s a more complex algorithm



Blocking

Aggregate in a cache-sensitive way 

Process a rectangular chunk of the array in each processor, with 
dimensions that maximize cache locality, and reduce coherence traffic 

But, this is microarchitecture-dependent 

Want to hide it in the compiler -- can we? 

Maybe, but may take more language extensions or programming effort



And the Level of Parallelism Still Varies

Load balancing 

Set up work queue, and pass out equal segments of successive diagonals 
to processors 

Now we get better performance than serial, same answer, and good 
utilization



Except that...

The work queue is shared (i.e., locked) data structure 

Here comes serialization again 

Need to have processors do a lot of work between queue accesses 

One processor manages the queue (bottleneck) 

Neglected to note that global queues are actually everywhere -- forall



With more work...

We can solve these problems too 

But what do you think? 

Is shared memory really easier than other parallel programming models? 

Or just a case of Pavlov’s programmers?



Why do we do it?

Because it’s easy to build a shared memory processor -- just put multiple 
CPUs on a bus 

And the hardware people are happy to let the software people then spend 
countless hours playing Whack-A-Mole to try to get performance out of it 

It’s simple enough in concept to be grasped by pointy-haired bosses



What About Message Passing?

Ah, the joys of network-topology dependent algorithms 

Topomania



There is no Universal Parallel Model

Every parallel architecture defines a new algorithmic model 

Consider a histogram operation on minor variants of a vector-array 
processor 

Portability is nonexistent 

Can’t grow code base



More Shared Memory 
Beyond the bus



Parallelism Approaches

Scale up: ILP (super pipeline, superscalar), threading, clock, short vector 

Scale out: Multiple cores, multiple multi-core nodes 

Vector/Streaming: GPU, tensor units, encryption units 

Heterogeneous: Combinations of approaches



Parallel Programming Abstractions

Shared memory: OpenMP, pthreads, Java threads, etc. (one address space) 

Distributed memory: MPI, RPC (separate address spaces) 

Vector: Parallel operators, CUDA, map-reduce, etc. (one address space)



Shared Memory Scaling

Shared memory is easy for a small number of CPUs 

Place them on a bus and use MESIF or similar protocol 

Bus quickly saturates, performance decreases for more than about 8 
processors 

How to extend shared memory to greater numbers? 

Assumes this abstraction is a good idea for scaling out



Directory-Based Coherence

Full Map 

Each block of DRAM (cache line unit) is extended 

Extension bits correspond to processors 

A 1 indicates the processor’s cache has a copy, a 0 means it doesn’t 

Usually some fixed number of bits (processors) per block



Directory-Based Coherence
Partial Map 

Each block of DRAM (cache line unit) is extended 

Extension is groups of bits, each representing a processor number 

Processor numbers are entered in the list when they request a copy 

Usually some fixed number of sharing entries (e.g., 4 or 8) 

When sharing exceeds the available list length, default to broadcast



Directory-Based Coherence
Chained Map 

Each block of DRAM (cache line unit) is extended 

Extension is a processor number for the “owner” (first request) 

Each cache line is extended with a next processor number or null, and the 
owner processor number 

Changes are sent to the owner, then forwarded down the chain (linked list) 

Protocol for updating the chain for a new owner, or deletions from list



Breakout Discussion

What are the pros and cons of each directory paradigm? 
(full map, partial map, chained) 

Discuss in groups, send me an email with your names and notes



Stanford DASH  
(Lenoski, ISCA 90)

Local cluster of cache coherent, bus snooping 
processors 
Cluster caches are shared via cache to cache 
transfers 
Connect via directory and extra cache to 
network 
Directory keeps track of sharing, manages 
messages for coherence



Node Architecture

Local main memory and disk, level 1 and 2 
caches 

Separate mesh-connected networks for 
memory request and replies (topology not 
important)



Directory Board

Directory controller -- sends requests out 

Pseudo-CPU -- handles outside requests 

Reply controller -- receives reply to request 
and passes to local node



Release Consistency
Weaker than sequential consistency 

Acquire and release operations 

An acquire must complete before subsequent reads and writes (everybody sees the 
acquire consistently) 

Non-owners can observe changes to protected variables, assuming they are aware 
of the critical section 

Before release all write (and read) operations must complete -- many remote 
operations will already be done



Types of Directory Clusters

Local: Cluster from which a request is issued 

Home: Cluster holding the main memory location in the global address 
space 

Remote: Any other cluster



Remote Memory States
Uncached remote -- not remotely cached 

Home is owner 

Shared remote -- clean, cached remote 

Home is owner 

Dirty remote -- one remote copy is dirty 

Remote is owner



Read Request



Read Exclusive 
Request



Scaling

Full map directory limited to size of bit vector representing clusters 

Each memory block extended with map vector 

Partial map directory defaults to broadcast when more clusters are present 

Memory block has short list of sharing clusters 

Chained map directory uses linked structures, has variable access times, 
complex ownership protocol



Distributed Memory
Sharing in local cluster but not beyond 

High performance network for memory to memory data movement 

Infiniband, Myrinet, custom 

Special network stack for low latency 

Programmer manages data placement and messaging for sharing 
copies 

Often requires new algorithms

Images: Lawrence Livermore National Laboratory



Hybrid

Modern nodes have up to 24 cores per socket, often dual sockets, with 
shared memory 

Local computations (e.g., 96 threads) communicate through shared 
memory 

Nonlocal communication uses message passing (e.g., MPI) 

Partitioned global address space (PGAS languages) try to elevate the 
abstraction by adding information about locality, partitioning, communication


