
Virtualization
Clothing the Wolf in Wool

Virtual Machines
Began in 1960s with IBM and MIT Project MAC

Also called “open shop” operating systems

Present user with the view of a bare machine

Execute most instructions directly, but trap operations that would reveal the fiction,
and emulate

Hot topic until Unix, then architectural support drops

Example of M68010

Basic VM

Physical Host architecture

Virtual Machine Monitor

Guest Operating System(s)

Virtual Architecture
Services

Emulation

Advantages

Greater security -- more isolation of tasks

Ability to manage QoS for tasks

Easy to profile tasks

Can run multiple operating systems

Can test and debug new OS code directly

Security

Each guest OS has its own virtual machine

Even if guest OS is compromised, it’s in a sandbox

Different users can be run in separate VMs

VMM can watch for bad behavior and shut down VM

Manages denial of service attacks

Quality of Service (QoS)
Each VM can have its own resource allocation

VMM scheduler manages access to actual resources

Different users see different machine configurations

Performance can be adjusted dynamically

Respond to need

Throttle excess usage

Ease of Profiling

Every OS service request goes through the VMM

Can keep statistics on many different factors

Useful for QoS management, security monitoring, provisioning

Multiple/Test systems

Since VMM presents a bare machine, each VM can run a different OS

If VMM is recursively virtualizable, can run itself as a guest, enabling OS
debugging on a live machine

Traditionally, the virtual architecture is a copy of the host architecture, but
smaller

Can be different, although emulation makes it slow

Recursively Virtualizable

Physical Host architecture

Virtual Machine Monitor
Virtual Architecture

Virtual Machine Monitor
Virtual Architecture

Guest Operating System

Guest Operating System

Disadvantages

More complex OS/VMM

Takes more resources than kernel OS

Requires hardware support

Can be slow if hardware support is weak

Gets in the way of performance research

Gerald Popek CACM 1974
Formal Requirements for Virtualizable Third Generation Architectures

Requirements

Equivalence: Virtual machine must look like bare HW (but smaller)

Resource control: All resources are virtualized and managed by the VMM

Efficiency: Has to be nearly as fast as running natively

Instruction Types

Privileged: Implies supervisor state with special instr.

Control sensitive: Changes processor mode, or memory map

Behavior sensitive: Behavior depends on mode or on location (anything that
can reveal state of other tasks)

A VMM requires that the sensitive instructions be a subset of the privileged
instructions

Recursive Virtualizability

If there is proper HW support, a VM can run recursively within itself

Allows nested operating systems, layers of control

Rarely supported

Paravirtualization

Can fake virtualization with JIT or direct binary translation (DBT) of sensitive,
non-privileged instructions

XEN approach when no HW virtualization mode

Can’t be completely hidden from adversary

Code can check whether a sensitive, non-privileged instruction has been
rewritten

Two Types
Type 1 (Xen) runs as separate privilege layer

Has a separate OS process for virtualizing I/O

All apps run on guest operating systems

Type 2 (KVM) modifies existing OS (e.g., Linux)

Uses existing device drivers in base OS

Runs some apps directly

Examples of x86 Non-virtualizable
Instructions

Sensitive, Non-privileged x86 Instructions
SGDT – Store Global Descriptor Table register

SIDT – Store Interrupt Descriptor Table register

SLDT – Store Local Descriptor Table register

SMSW – Store Machine Status Word

PUSHF(D) – Push EFLAGS register on stack (16 and 32-bit versions)

POPF(D) – Pop EFLAGS register from stack, with some privilege levels (16 and 32-
bit versions)

Sensitive, Non-privileged x86 Instructions
LAR – Load access rights into GP register

LSL – Load segment address limit into GP register

VERR – Verify if code/data segment is readable based on current protection level

VERW – Verify is code/data segment is writeable based on current protection level

POP – Can raise general protection exception depending on target register and
protection level

PUSH – Can push protection status onto the stack

Sensitive, Non-privileged x86 Instructions

CALL – Can call to same or a different privilege level, saving return info

JMP – Like CALL, but without saving return info

INT n – Like a far CALL to a different level, but also pushes EFLAGS on stack

RET – Can return between privilege levels

STR – Store segment selector (including privilege bits)

MOV – Can be used to load or store control register set

Virtualization Extensions
VT-x introduced 2005 by Intel

AMD-V introduced 2006 by AMD

AMD Rapid Virtualization Indexing (nested page tables) adds hardware to MMU

Intel adds Extended Page Tables

VT-D provides virtualization of directed I/O, trapping DMA, etc.

Typically not enabled in BIOS

VirtualBox claims to be faster without VT-x

Itanium Example of VM Subtlety

Trap to a higher level, setting violation status

Can only return to a lower level resetting status

Can’t forward the violation to a guest OS to handle

Beyond the ISA

Areas that are hard to virtualize
Complex virtual memory
I/O and network devices
Graphics, GPUs
Multithreading
Cache coherence
Multicore
TLB, branch predictor -- clever optimizations can backfire when they are
virtual

User Level Virtual Machine
Java virtual machine

Executes bytecode on stack architecture

Some bytecodes much more complex that ISA

Simulators (MARSSx86, PTLsim, QEMU)

QEMU emulates (a bit like paravirtualization)

PTLsim simulates each instruction

MARSSx86 uses QEMU to fast forward, then simulates with fairly accurate timing

Cloud Computing

Clusters of virtual nodes

Less intensive tasks share physical node

More intensive tasks share less

Facilitates image migration for load balancing

