
Scoreboarding
Managing Dependences for
Multiple Functional Units

CDC 6600 - 1964

Multiple Functional Units

Provide parallelism

Multiple instructions execute simultaneously

Potential for conflicts on operands

Operand Dependences

RAW: Read After Write

Need to read (use) a value that has not yet been written

WAW: Write After Write

Writes occur out of order because units vary in timing

WAR: Write After Read

Need to read a value before it gets overwritten

Instructions, Functional Units, and
Registers

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0

1

2

3

F
D
S
S

0
9
7
4

2
4
5
6

Function Unit, Destination, Source, Source

Function Unit Number

Register Number
Instruction Queue

F
D
S
S

1
12
10
11

3
14
13
12

Active Instructions

Result Register Designator

0
1
2
3
4
5
6
7
8
9

10
11
12 1
13
14 3
15

Specifies register is reserved by a given unit
RRD

0

1

2

3

F
D
S
S

0
9
7
4

2
4
5
6

F
D
S
S

1
12
10
11

3
14
13
12

Entry-Operand Register Designator

0

1 10 V 11 V

2

3 13 V 12 P 1

Specifies operand sources and status for a unit: Valid/Pending, if Pending source unit is given

EORD

0
1
2
3
4
5
6
7
8
9

10
11
12 1
13
14 3
15

F
D
S
S

0
9
7
4

2
4
5
6

F
D
S
S

1
12
10
11

3
14
13
12

Issue Rule
An instruction can issue from the queue when its functional unit is available, and its result

register is not reserved by an active instruction. This prevents WAW hazards: it’s impossible
for two active instructions to be pending with the same destination register.

0

1 10 V 11 V

2

3 13 V 12 P 1

0
1
2
3
4
5
6
7
8
9

10
11
12 1
13
14 3
15

F
D
S
S

0
9
7
4

2
4
5
6

F
D
S
S

1
12
10
11

3
14
13
12

Release Rule
Operands are only released to a functional unit when all of them are valid, preventing RAW hazards.

Release can occur in parallel with register writing, via forwarding.

0

1 10 V 11 V

2

3 13 V 12 P 1

0
1
2
3
4
5
6
7
8
9

10
11
12 1
13
14 3
15

F
D
S
S

0
9
7
4

2
4
5
6

F
D
S
S

1
12
10
11

3
14
13
12

Stall Rule
An instruction will be stalled if its destination is listed as an entry operand for any other

pending instruction. This prevents WAR hazards: it’s not allowed to write until the value in its
destination has been released to all dependent instructions.

0

1 10 V 11 V

2

3 13 V 12 P 1

0
1
2
3
4
5
6
7
8
9

10
11
12 1
13
14 3
15

F
D
S
S

0
9
7
4

2
4
5
6

F
D
S
S

1
12
10
11

3
14
13
12

Current status
Instruction in F1 has valid operands. Instruction in F3 is stalled waiting for result from F1 (RAW

hazard), and the operand in R13 has not been released to it. The next instruction is free to issue.

0

1 10 V 11 V

2

3 13 V 12 P 1

0
1
2
3
4
5
6
7
8
9

10
11
12 1
13
14 3
15

F
D
S
S

0
9
7
4

2
4
5
6

F
D
S
S

1
12
10
11

3
14
13
12

Cycle 2
Result from F1 is valid, and forwarded to F3 while being written in R12. R13 is also released to F3. F1 is busy until result is written.

Instruction issues to F2, reserving R4 for result. Valid operands in R5 and R6 are released to F2.

0
1
2
3
4 2
5
6
7
8
9

10
11
12
13
14 3
15

F
D
S
S

0
9
7
4

F
D
S
S

2
4
5
6

1
12
10
11

3
14
13
12

0

1 10 V 11 V

2 5 V 6 V

3 13 V 12 V

Cycle 3
New instructions arrive. F1 instruction completes. Result from F3 is valid, and being written in R14. Instruction in F2 is executing.

Instruction in queue issues to F0 because F0 and R9 are available, but must wait for result from F2 (RAW hazard).

0 7 V 4 P 2

1

2 5 V 6 V

3 13 V 12 V

0
1
2
3
4 2
5
6
7
8
9 0

10
11
12
13
14
15

F
D
S
S

2
13
10
8

3
7

13
12

1
9

13
12

F
D
S
S

0
9
7
4

2
4
5
6

3
14
13
12

Cycle 4
F3 instruction completes. Result from F2 is valid, and being written in R4 and forwarded to F0.

Operands are released to instruction in F0.
Instruction in queue cannot issue to F1 because F0 has the same destination reserved (WAW hazard).

0 7 V 4 P 2

1

2 5 V 6 V

3

0
1
2
3
4
5
6
7
8
9 0

10
11
12
13
14
15

F
D
S
S

2
13
10
8

3
7

13
12

1
9

13
12

F
D
S
S

0
9
7
4

2
4
5
6

Cycle 5
F2 instruction completes. Result from F0 is valid, and being written in R9.

Instruction in queue can issue to F1 and receive its operands because F0 is
writing in 9 and will finish before F1 starts.

0 7 V 4 V

1 13 V 12 V

2

3

0
1
2
3
4
5
6
7
8
9 1

10
11
12
13
14
15

F
D
S
S

2
13
10
8

3
7

13
12

F
D
S
S

1
9

13
12

0
9
7
4

Cycle 6
F0 instruction completes. Instruction in queue can issue to F3 and receive its operands because F3 and R7 are available.

It’s fine to read the same operands as F0 (RAR isn’t a hazard).

0

1 13 V 12 V

2

3 13 V 12 V

0
1
2
3
4
5
6
7 3
8
9 1

10
11
12
13
14
15

F
D
S
S

2
15
14
5

2
13
10
8

F
D
S
S

3
7

13
12

1
9

13
12

Cycle 7
F1 instruction is writing its result to R9.

Instruction in queue issues and receives operands because F2 and R13 are available and no writes are pending to R10 or R8.
F2 stalls because its destination is an entry operand for F3. (WAR Hazard)

0

1 13 V 12 V

2 10 V 8 V

3 13 V 12 V

0
1
2
3
4
5
6
7 3
8
9

10
11
12
13 2
14
15

F
D
S
S

2
15
14
5

F
D
S
S

2
13
10
8

3
7

13
12

1
9

13
12

Cycle 8
F1 instruction completes. F3 is writing to R7. F2 starts execution.

Instruction in queue cannot issue because F2 is busy (structural hazard).

0

1

2 10 V 8 V

3 13 V 12 V

0
1
2
3
4
5
6
7
8
9

10
11
12
13 2
14
15

F
D
S
S

2
15
14
5

F
D
S
S

2
13
10
8

3
7

13
12

Cycle 9
F3 instruction completes. F2 is writing to R13.

Instruction in queue cannot issue because F2 is busy (structural hazard).

0

1

2 10 V 8 V

3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

F
D
S
S

2
15
14
5

F
D
S
S

2
13
10
8

Summary

Scoreboard avoids dependence hazards

Centralized control of issue/release/stall

Overly restrictive

Simple to implement

Reservation Stations
Tomasulo’s Algorithm for Managing Dependence Among Multiple
Functional Units

IBM 360/91 - 1966-1967

Reservation Station
One or more associated with each functional unit

Contains:

Operation

Operand values, if already computed

Operand source stations, if not yet available

Operand and reservation station status

Registers

Extended with result designator, indicating reservation station that will write
to it

Keeps track of most recently issued instruction that targets this register

Unlike scoreboard, this can change before the register is updated

Issuing instructions check the registers to see where each operand is
coming from

0 0 14
1 0 25
2 0 84
3 0 63
4 0 22
5 5
6 0 97
7 0 45
8 0 48
9 0 18
10 0 27
11 0 83
12 0 16
13 0 47
14 0 69
15 0 51

Reg# Desig Value

OP
D
S
S

Z
9
7
4

X
4
5
6

Instruction Queue

0

1

2

3

Function Units

1 OP V1 V2 S1 S2

2

3

4

5 X 3 17 0 0

6

7

8

Reservation
Stations

Common Data Bus

Station 5 has operation X with
valid values, executing on unit 2

Instruction Queue

Function Units

Reservation
Stations

Common Data Bus

Instruction in queue issues to
station 6 with invalid V1 value,
and copy of R5 designator for
station 5. V2 is a valid copy of

R6.

Reg# Desig Value

Copying value avoids WAW
and WAR hazards. R4 now

designates its value is pending
from station 6.

0 0 14
1 0 25
2 0 84
3 0 63
4 6 22
5 5 99
6 0 97
7 0 45
8 0 48
9 0 18
10 0 27
11 0 83
12 0 16
13 0 47
14 0 69
15 0 51

OP
D
S
S

Z
9
7
4

0

1

2

3

1 OP V1 V2 S1 S2

2

3

4

5 X 3 17 0 0

6 X 0 97 5 0

7

8

Instruction Queue

Function Units

Reservation
Stations

Common Data Bus

Function unit 2 produces a
result for station 5 and

broadcasts it on the CDB,
where the station number will
match the S1 designator in

station 6

Reg# Desig Value

5

0 0 14
1 0 25
2 0 84
3 0 63
4 6 22
5 5 99
6 0 97
7 0 45
8 0 48
9 0 18
10 0 27
11 0 83
12 0 16
13 0 47
14 0 69
15 0 51

OP
D
S
S

Z
9
7
4

0

1

2

3

1 OP V1 V2 S1 S2

2

3

4

5 X 3 17 0 0

6 X 0 97 5 0

7

8

Instruction Queue

Function Units

Reservation
Stations

Common Data Bus

Station 6 snoops the value, and
copies it, clearing the S1

designator. It is now ready to
execute. This avoids RAW

hazards.

Reg# Desig Value

5

Register 5 now has a valid
result, and a 0 designator

0 0 14
1 0 25
2 0 84
3 0 63
4 6 22
5 0 77
6 0 97
7 0 45
8 0 48
9 0 18
10 0 27
11 0 83
12 0 16
13 0 47
14 0 69
15 0 51

OP
D
S
S

Z
9
7
4

0

1

2

3

1 OP V1 V2 S1 S2

2

3

4

5 X 3 17 0 0

6 X 77 97 0 0

7

8

Instruction Queue

Function Units

Reservation
Stations

Common Data Bus

Instruction in queue issues to
station 3, copying value from
R7, and designator from R4

that result will come from
station 6

Reg# Desig Value

Register 9 designates that 3 will
write it.

0 0 14
1 0 25
2 0 84
3 0 63
4 6 22
5 0 77
6 0 97
7 0 45
8 0 48
9 3 18
10 0 27
11 0 83
12 0 16
13 0 47
14 0 69
15 0 51

OP
D
S
S

0

1

2

3

1 OP V1 V2 S1 S2

2

3 Z 45 0 0 6

4

5

6 X 77 97 0 0

7

8

Register Renaming
Reservation stations act as extra registers

If a register has a designator other than 0 that differs from the station that is
about to write it, the write is cancelled

An instruction is pending that will overwrite it

All consumers of this value already have copies

Result designator acts as a pointer to the “station register” that has taken
this logical register’s name

Comparison with Scoreboard
Distributed (vs. centralized)

Allows out-of-order execution

Allows more instructions to proceed

More complex to implement

Adds a one cycle delay for forwarding

Neither can execute past a branch

Sohi IEEE TC 1990
Instruction Issue Logic for High Performance Interruptible, Multiple
Functional Unit, Pipelined Computers

Register Update Unit
Similar to reservation stations, but arranged in a queue

Head points to next instruction to commit

Tail is next available issue slot

If Head = Tail, then RUU is full and no issue allowed

Tail Head

RUU Issue

Instruction goes into current tail pointer station

Tail pointer is updated

If source register values are available, copied to station

If value(s) not available, station gets tag(s)

RUU Register Extensions
Registers can have multiple instances

Queue structure keeps instances in order

Registers extended with Number of Instances and Last Instance fields (NI, LI)

When an instruction with destination Ri issues, NIi and LIi are incremented, LI is
modulo n, NI is max 2n-1

When NI is max, issue is blocked

Committing instruction with Ri destination decrements NIi

RUU Tag

Tags in the RUU are Ri concatenated with LIi

A tag thus indicates the most recent destination instance for the register

Up to 7 instances of a register are allowed in this implementation

Register # LI

RUU Entry Source Fields

Ready bit

Tag subfield

Content subfield

If not ready, then watch result bus for matching tag

When tag is seen, copy result bus into content subfield and switch to Ready

RUU Entry Structure
Source 1 Source 2

Ready Tag Content Ready Tag Content
Destination Control

Tag Dest Dispatch Unit # Executed PC

Determining Issue

When operands are all ready, an instruction can be issued to a functional unit

Loads and stores get priority (other schemes possible)

Others issued in order received

Commit

When Executed is set, instruction is done

Results go to register file

NI for destination register is decremented

Head pointer is updated

Results

With bypass Without bypass

Branch Prediction
Reducing Pipeline Bubbles

The Problem
Branches occur approximately every 5 instructions

Superscalar pipelines have on the order of 100 instructions in flight

To get instructions in to the pipelines we have to predict the ways that
branches will go

Branch outcome may not be computed until several stages into the pipeline

A mispredicted branch means wrong instructions are in the pipes, so they
must be flushed

Int Int Int FP FP BR FP FP BR FP

FP

FP

Int

Int

Int

L/S

L/S

Br

A branch occurs with most issue slots

FP

FP

Int

Int

Int

L/S

L/S

Br

Misprediction of a branch may be detected late

Int Int Int FP FP BR FP FP BR FP

FP

FP

Int

Int

Int

L/S

L/S

Br

Many dependent instructions must be flushed

Int Int Int FP FP BR FP FP BR FP

Pipeline Efficiency = 1/(1+Pj Pt P)

Pj = 0.2 (20% jumps)
Pt = 0.1 (10% mispredicts)

P = 30 (penalty)
Efficiency = 62.5%

Predictor Context

Local: Specific to a particular branch, or its history

Global: Using information from other branches (correlations between
branches can be more predictive)

Hybrid: Selecting different prediction mechanisms for different branches

Static Predictions

Predictions that do not depend on run time

Always-taken (or always not taken)

Backward taken (loop return) and forward not (loop exit) -- uses sign of
relative address in branch instruction

Dynamic Prediction

Uses information from branch history

For example, predict same as last outcome

Need to record state of the branch

