
Managing a Pipeline
No valves, but plenty of bubbles

How does the CU keep track of what each stage should be doing for each
instruction in the pipe?

At decode, it generates all of the control signals for the current instruction,
for every stage, and stores them in a set of control registers

The control registers are also pipelined

At each stage, one register is “consumed” and the others are passed on to
the next stage

Pipeline Control

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Simulation

On each cycle, evaluation proceeds back to front
When a stage advances, its opens a space for the one behind it to advance
(like a queue)
Stages that take multiple cycles don’t advance, and a “bubble” occurs
A stage is blocked from advancing if the next stage is still full
A multi-cycle operation may be able to do work while blocked from
advancing (e.g., FP DIV in Execute while a cache miss is serviced in
Memory)

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

E instruction takes 3 cycles

F D E M W

Bubble (NOP) is inserted, and pipe stalls behind E
(structural hazard)

F D E M W

Another bubble is inserted, still stalled

F D E M W

Instruction finishes in E and advances

F D E M W

F D E M W

F D E M W

F D E M W

Simulation

When Fetch stage is reached, an instruction is fetched
Decode examines a fetched instruction and creates an object that has all of
the control information (type, opcode, condition, addressing mode, etc.)
broken into fields by stage, plus execution state fields (operands, result)
At each stage, the corresponding control field in the instruction object is
examined and selects branches to carry out the operation (may be NOP)
Using the state of the instruction (e.g., operand values), the stage carries
out its task (e.g., computes a result), and updates the state (e.g., puts result
in result field)

Simulation

Non-piped simulation can still use the pipeline

Just block fetch until the current instruction writes back

Only one instruction will be in the pipe at a given time

Will take at least 5 cycles to pass through (can be delayed)

Since the pipe would be clocked roughly 5 times as fast, this will give a
reasonable comparison

Pipelined Instruction Flow and Hazards
With Rescheduling to Improve Efficiency

Hazards

Data Hazard: An instruction depends on a value from another instruction
ahead of it in the pipe, which has not yet been computed

Structural Hazard: A resource is not available (e.g., the FP unit is still busy
with a DIV, or a cache miss occurs, or the next stage is stalled)

Control Hazard: A conditional branch is evaluated in a later stage, and
instructions from the wrong path are behind it in the pipeline

Simulating Data Hazards
Each instruction object has a Target field with the number of the register it will write
(if any)

Decode stalls an instruction if it has an operand that is a Target in any instructions
ahead of it in the pipe

Write Back deletes the instruction object after putting the value in the register,
enabling Decode to advance

Forwarding allows a later stage to send a result to an earlier stage

Easy in simple pipes, but harder for longer pipes when handling faults/interrupts

Simulating Structural Hazards

Back-to-front evaluation simulates blocking due to stalled stages

Memory (or cache) can make a stage (fetch or memory) wait

Slow operations (e.g., FDIV, vector logarithm) can make execute wait

Simulating Control Hazards

If a conditional branch is taken, mark instructions behind it as squashed

Set PC to new location so next fetch will get correct instruction

Squashed instructions flow through the pipe as NOPs behind the branch

Could just change those instruction to NOPs, but that can be confusing
for debugging via the UI, as it shows the instructions in the pipe in single
step mode, and they aren’t the same as in the program code

Example

Let’s look at a longer pipe, to see more realistic effect (MIPS R4400)

Run 7 instructions through

No branches so only data and structural hazards (D and S)

MIPS R4400 Pipe
IF: Instruction First (I-cache fetch part 1)
IS: Instruction Second (I-cache & decode)
RF: Register File (Get operands)
EX: EXecute (Perform operation)
DF: Data First (D-cache fetch part 1)
DS: Data Second (D-cache fetch part 2)
TC: Tag Check (Check for miss) TC can forward a result to EX
WB: Write Back (Save result)

Ld R1, A IF

Ld R2, B

Mul R3, R1, R2

Add R3, R1, R3

Add R5, R4, R2

Add R6, R7, R5

Sub R10, R8, R9

Ld R1, A IF IS

Ld R2, B IF

Mul R3, R1, R2

Add R3, R1, R3

Add R5, R4, R2

Add R6, R7, R5

Sub R10, R8, R9

Ld R1, A IF IS RF

Ld R2, B IF IS

Mul R3, R1, R2 IF

Add R3, R1, R3

Add R5, R4, R2

Add R6, R7, R5

Sub R10, R8, R9

Ld R1, A IF IS RF EX

Ld R2, B IF IS RF

Mul R3, R1, R2 IF IS

Add R3, R1, R3 IF

Add R5, R4, R2

Add R6, R7, R5

Sub R10, R8, R9

Ld R1, A IF IS RF EX DF

Ld R2, B IF IS RF EX

Mul R3, R1, R2 IF IS RF

Add R3, R1, R3 IF IS

Add R5, R4, R2 IF

Add R6, R7, R5

Sub R10, R8, R9

Ld R1, A IF IS RF EX DF DS

Ld R2, B IF IS RF EX DF

Mul R3, R1, R2 IF IS RF D

Add R3, R1, R3 IF IS S

Add R5, R4, R2 IF S

Add R6, R7, R5 S

Sub R10, R8, R9

Ld R1, A IF IS RF EX DF DS TC

Ld R2, B IF IS RF EX DF DS

Mul R3, R1, R2 IF IS RF D D

Add R3, R1, R3 IF IS S S

Add R5, R4, R2 IF S S

Add R6, R7, R5 S S

Sub R10, R8, R9 S

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC

Mul R3, R2, R2 IF IS RF D D EX

Add R3, R1, R3 IF IS S S RF

Add R5, R4, R2 IF S S IS

Add R6, R7, R5 S S IF

Sub R10, R8, R9 S S

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF

Add R3, R1, R3 IF IS S S RF D

Add R5, R4, R2 IF S S IS S

Add R6, R7, R5 S S IF S

Sub R10, R8, R9 S S S

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF DS

Add R3, R1, R3 IF IS S S RF D D

Add R5, R4, R2 IF S S IS S S

Add R6, R7, R5 S S IF S S

Sub R10, R8, R9 S S S S

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF DS TC

Add R3, R1, R3 IF IS S S RF D D EX

Add R5, R4, R2 IF S S IS S S RF

Add R6, R7, R5 S S IF S S IS

Sub R10, R8, R9 S S S S IF

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF DS TC WB

Add R3, R1, R3 IF IS S S RF D D EX DF

Add R5, R4, R2 IF S S IS S S RF EX

Add R6, R7, R5 S S IF S S IS RF

Sub R10, R8, R9 S S S S IF IS

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF DS TC WB

Add R3, R1, R3 IF IS S S RF D D EX DF DS

Add R5, R4, R2 IF S S IS S S RF EX DF

Add R6, R7, R5 S S IF S S IS RF D

Sub R10, R8, R9 S S S S IF IS S

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF DS TC WB

Add R3, R1, R3 IF IS S S RF D D EX DF DS TC

Add R5, R4, R2 IF S S IS S S RF EX DF DS

Add R6, R7, R5 S S IF S S IS RF D D

Sub R10, R8, R9 S S S S IF IS S S

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF DS TC WB

Add R3, R1, R3 IF IS S S RF D D EX DF DS TC WB

Add R5, R4, R2 IF S S IS S S RF EX DF DS TC

Add R6, R7, R5 S S IF S S IS RF D D EX

Sub R10, R8, R9 S S S S IF IS S S RF

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF DS TC WB

Add R3, R1, R3 IF IS S S RF D D EX DF DS TC WB

Add R5, R4, R2 IF S S IS S S RF EX DF DS TC WB

Add R6, R7, R5 S S IF S S IS RF D D EX DF

Sub R10, R8, R9 S S S S IF IS S S RF EX

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF DS TC WB

Add R3, R1, R3 IF IS S S RF D D EX DF DS TC WB

Add R5, R4, R2 IF S S IS S S RF EX DF DS TC WB

Add R6, R7, R5 S S IF S S IS RF D D EX DF DS

Sub R10, R8, R9 S S S S IF IS S S RF EX DF

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF DS TC WB

Add R3, R1, R3 IF IS S S RF D D EX DF DS TC WB

Add R5, R4, R2 IF S S IS S S RF EX DF DS TC WB

Add R6, R7, R5 S S IF S S IS RF D D EX DF DS TC

Sub R10, R8, R9 S S S S IF IS S S RF EX DF DS

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF DS TC WB

Add R3, R1, R3 IF IS S S RF D D EX DF DS TC WB

Add R5, R4, R2 IF S S IS S S RF EX DF DS TC WB

Add R6, R7, R5 S S IF S S IS RF D D EX DF DS TC WB

Sub R10, R8, R9 S S S S IF IS S S RF EX DF DS TC

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Mul R3, R2, R2 IF IS RF D D EX DF DS TC WB

Add R3, R1, R3 IF IS S S RF D D EX DF DS TC WB

Add R5, R4, R2 IF S S IS S S RF EX DF DS TC WB

Add R6, R7, R5 S S IF S S IS RF D D EX DF DS TC WB

Sub R10, R8, R9 S S S S IF IS S S RF EX DF DS TC WB

Optimal 14 / Actual 20 = 70% efficient

Reschedule

Let’s see what happens if we reorder ops

Move the Sub up, to follow loads

Reverse order of first two Add ops

Ld R1, A IF

Ld R2, B

Sub R10, R8, R9

Mul R3, R1, R2

Add R5, R4, R2

Add R3, R1, R3

Add R6, R7, R5

Ld R1, A IF IS

Ld R2, B IF

Sub R10, R8, R9

Mul R3, R1, R2

Add R5, R4, R2

Add R3, R1, R3

Add R6, R7, R5

Ld R1, A IF IS RF

Ld R2, B IF IS

Sub R10, R8, R9 IF

Mul R3, R1, R2

Add R5, R4, R2

Add R3, R1, R3

Add R6, R7, R5

Ld R1, A IF IS RF EX

Ld R2, B IF IS RF

Sub R10, R8, R9 IF IS

Mul R3, R1, R2 IF

Add R5, R4, R2

Add R3, R1, R3

Add R6, R7, R5

Ld R1, A IF IS RF EX DF

Ld R2, B IF IS RF EX

Sub R10, R8, R9 IF IS RF

Mul R3, R1, R2 IF IS

Add R5, R4, R2 IF

Add R3, R1, R3

Add R6, R7, R5

Ld R1, A IF IS RF EX DF DS

Ld R2, B IF IS RF EX DF

Sub R10, R8, R9 IF IS RF EX

Mul R3, R1, R2 IF IS RF

Add R5, R4, R2 IF IS

Add R3, R1, R3 IF

Add R6, R7, R5

Ld R1, A IF IS RF EX DF DS TC

Ld R2, B IF IS RF EX DF DS

Sub R10, R8, R9 IF IS RF EX DF

Mul R3, R1, R2 IF IS RF D

Add R5, R4, R2 IF IS S

Add R3, R1, R3 IF S

Add R6, R7, R5 S

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC

Sub R10, R8, R9 IF IS RF EX DF DS

Mul R3, R1, R2 IF IS RF D EX

Add R5, R4, R2 IF IS S RF

Add R3, R1, R3 IF S IS

Add R6, R7, R5 S IF

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Sub R10, R8, R9 IF IS RF EX DF DS TC

Mul R3, R1, R2 IF IS RF D EX DF

Add R5, R4, R2 IF IS S RF EX

Add R3, R1, R3 IF S IS RF

Add R6, R7, R5 S IF IS

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Sub R10, R8, R9 IF IS RF EX DF DS TC WB

Mul R3, R1, R2 IF IS RF D EX DF DS

Add R5, R4, R2 IF IS S RF EX DF

Add R3, R1, R3 IF S IS RF D

Add R6, R7, R5 S IF IS S

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Sub R10, R8, R9 IF IS RF EX DF DS TC WB

Mul R3, R1, R2 IF IS RF D EX DF DS TC

Add R5, R4, R2 IF IS S RF EX DF DS

Add R3, R1, R3 IF S IS RF D EX

Add R6, R7, R5 S IF IS S RF

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Sub R10, R8, R9 IF IS RF EX DF DS TC WB

Mul R3, R1, R2 IF IS RF D EX DF DS TC WB

Add R5, R4, R2 IF IS S RF EX DF DS TC

Add R3, R1, R3 IF S IS RF D EX DF

Add R6, R7, R5 S IF IS S RF EX

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Sub R10, R8, R9 IF IS RF EX DF DS TC WB

Mul R3, R1, R2 IF IS RF D EX DF DS TC WB

Add R5, R4, R2 IF IS S RF EX DF DS TC WB

Add R3, R1, R3 IF S IS RF D EX DF DS

Add R6, R7, R5 S IF IS S RF EX DF

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Sub R10, R8, R9 IF IS RF EX DF DS TC WB

Mul R3, R1, R2 IF IS RF D EX DF DS TC WB

Add R5, R4, R2 IF IS S RF EX DF DS TC WB

Add R3, R1, R3 IF S IS RF D EX DF DS TC

Add R6, R7, R5 S IF IS S RF EX DF DS

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Sub R10, R8, R9 IF IS RF EX DF DS TC WB

Mul R3, R1, R2 IF IS RF D EX DF DS TC WB

Add R5, R4, R2 IF IS S RF EX DF DS TC WB

Add R3, R1, R3 IF S IS RF D EX DF DS TC WB

Add R6, R7, R5 S IF IS S RF EX DF DS TC

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Sub R10, R8, R9 IF IS RF EX DF DS TC WB

Mul R3, R1, R2 IF IS RF D EX DF DS TC WB

Add R5, R4, R2 IF IS S RF EX DF DS TC WB

Add R3, R1, R3 IF S IS RF D EX DF DS TC WB

Add R6, R7, R5 S IF IS S RF EX DF DS TC WB

Optimal 14 / Actual 16 = 88% efficient

Conclusion

Instruction rescheduling significantly boosts efficiency

NO HARDWARE CHANGE REQUIRED!

Fairly simple compiler analysis

Done in hardware on modern processors

Only possible for separable operations

Ld R1, A

Add R5, R4, R1

Ld R2, B

Add R7, R6, R2

Ld R3, C

Add R8, R6, R3

Add R9, R7, R8

Add R10, R5, R2

Exercise: Determine the efficiency of the
following, and then reschedule the instructions

to improve the efficiency

Ld R1, A IF

Add R5, R4, R1

Ld R2, B

Add R7, R6, R2

Ld R3, C

Add R8, R6, R3

Add R9, R7, R8

Add R10, R5, R2

Ld R1, A IF IS

Add R5, R4, R1 IF

Ld R2, B

Add R7, R6, R2

Ld R3, C

Add R8, R6, R3

Add R9, R7, R8

Add R10, R5, R2

Ld R1, A IF IS RF

Add R5, R4, R1 IF IS

Ld R2, B IF

Add R7, R6, R2

Ld R3, C

Add R8, R6, R3

Add R9, R7, R8

Add R10, R5, R2

Ld R1, A IF IS RF EX

Add R5, R4, R1 IF IS RF

Ld R2, B IF IS

Add R7, R6, R2 IF

Ld R3, C

Add R8, R6, R3

Add R9, R7, R8

Add R10, R5, R2

Ld R1, A IF IS RF EX DF

Add R5, R4, R1 IF IS RF D

Ld R2, B IF IS S

Add R7, R6, R2 IF S

Ld R3, C S

Add R8, R6, R3

Add R9, R7, R8

Add R10, R5, R2

Ld R1, A IF IS RF EX DF DS

Add R5, R4, R1 IF IS RF D D

Ld R2, B IF IS S S

Add R7, R6, R2 IF S S

Ld R3, C S S

Add R8, R6, R3 S

Add R9, R7, R8

Add R10, R5, R2

Ld R1, A IF IS RF EX DF DS TC

Add R5, R4, R1 IF IS RF D D EX

Ld R2, B IF IS S S RF

Add R7, R6, R2 IF S S IS

Ld R3, C S S IF

Add R8, R6, R3 S S

Add R9, R7, R8 S

Add R10, R5, R2

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF

Ld R2, B IF IS S S RF EX

Add R7, R6, R2 IF S S IS RF

Ld R3, C S S IF IS

Add R8, R6, R3 S S IF

Add R9, R7, R8 S S

Add R10, R5, R2 S

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS

Ld R2, B IF IS S S RF EX DF

Add R7, R6, R2 IF S S IS RF D

Ld R3, C S S IF IS S

Add R8, R6, R3 S S IF S

Add R9, R7, R8 S S S

Add R10, R5, R2 S S

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC

Ld R2, B IF IS S S RF EX DF DS

Add R7, R6, R2 IF S S IS RF D D

Ld R3, C S S IF IS S S

Add R8, R6, R3 S S IF S S

Add R9, R7, R8 S S S S

Add R10, R5, R2 S S S

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC

Add R7, R6, R2 IF S S IS RF D D EX

Ld R3, C S S IF IS S S RF

Add R8, R6, R3 S S IF S S IS

Add R9, R7, R8 S S S S IF

Add R10, R5, R2 S S S S

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF

Ld R3, C S S IF IS S S RF EX

Add R8, R6, R3 S S IF S S IS RF

Add R9, R7, R8 S S S S IF IS

Add R10, R5, R2 S S S S IF

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF DS

Ld R3, C S S IF IS S S RF EX DF

Add R8, R6, R3 S S IF S S IS RF D

Add R9, R7, R8 S S S S IF IS S

Add R10, R5, R2 S S S S IF S

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF DS TC

Ld R3, C S S IF IS S S RF EX DF DS

Add R8, R6, R3 S S IF S S IS RF D D

Add R9, R7, R8 S S S S IF IS S S

Add R10, R5, R2 S S S S IF S S

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF DS TC WB

Ld R3, C S S IF IS S S RF EX DF DS TC

Add R8, R6, R3 S S IF S S IS RF D D EX

Add R9, R7, R8 S S S S IF IS S S RF

Add R10, R5, R2 S S S S IF S S IS

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF DS TC WB

Ld R3, C S S IF IS S S RF EX DF DS TC WB

Add R8, R6, R3 S S IF S S IS RF D D EX DF

Add R9, R7, R8 S S S S IF IS S S RF D

Add R10, R5, R2 S S S S IF S S IS S

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF DS TC WB

Ld R3, C S S IF IS S S RF EX DF DS TC WB

Add R8, R6, R3 S S IF S S IS RF D D EX DF DS

Add R9, R7, R8 S S S S IF IS S S RF D D

Add R10, R5, R2 S S S S IF S S IS S S

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF DS TC WB

Ld R3, C S S IF IS S S RF EX DF DS TC WB

Add R8, R6, R3 S S IF S S IS RF D D EX DF DS TC

Add R9, R7, R8 S S S S IF IS S S RF D D EX

Add R10, R5, R2 S S S S IF S S IS S S RF

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF DS TC WB

Ld R3, C S S IF IS S S RF EX DF DS TC WB

Add R8, R6, R3 S S IF S S IS RF D D EX DF DS TC WB

Add R9, R7, R8 S S S S IF IS S S RF D D EX DF

Add R10, R5, R2 S S S S IF S S IS S S RF EX

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF DS TC WB

Ld R3, C S S IF IS S S RF EX DF DS TC WB

Add R8, R6, R3 S S IF S S IS RF D D EX DF DS TC WB

Add R9, R7, R8 S S S S IF IS S S RF D D EX DF DS

Add R10, R5, R2 S S S S IF S S IS S S RF EX DF

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF DS TC WB

Ld R3, C S S IF IS S S RF EX DF DS TC WB

Add R8, R6, R3 S S IF S S IS RF D D EX DF DS TC WB

Add R9, R7, R8 S S S S IF IS S S RF D D EX DF DS TC

Add R10, R5, R2 S S S S IF S S IS S S RF EX DF DS

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF DS TC WB

Ld R3, C S S IF IS S S RF EX DF DS TC WB

Add R8, R6, R3 S S IF S S IS RF D D EX DF DS TC WB

Add R9, R7, R8 S S S S IF IS S S RF D D EX DF DS TC WB

Add R10, R5, R2 S S S S IF S S IS S S RF EX DF DS TC

Ld R1, A IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF D D EX DF DS TC WB

Ld R2, B IF IS S S RF EX DF DS TC WB

Add R7, R6, R2 IF S S IS RF D D EX DF DS TC WB

Ld R3, C S S IF IS S S RF EX DF DS TC WB

Add R8, R6, R3 S S IF S S IS RF D D EX DF DS TC WB

Add R9, R7, R8 S S S S IF IS S S RF D D EX DF DS TC WB

Add R10, R5, R2 S S S S IF S S IS S S RF EX DF DS TC WB

Optimal 15 / Actual 23 = 65% efficient

Rescheduling

Ld R3, C IF IS RF EX DF DS TC WB

Ld R1, A IF IS RF EX DF DS TC WB

Ld R2, B IF IS RF EX DF DS TC WB

Add R8, R6, R3 IF IS RF EX DF DS TC WB

Add R5, R4, R1 IF IS RF EX DF DS TC WB

Add R7, R6, R2 IF IS RF EX DF DS TC WB

Add R10, R5, R2 IF IS RF D EX DF DS TC WB

Add R9, R7, R8 IF IS S RF EX DF DS TC WB

Optimal 15 / Actual 16 = 94% efficient

Simulating Forwarding (5-stage pipe)

Alternatively, as an instruction enters Write Back, its result can be copied to
the operand field of the instruction in Decode

Its value will still be written to the register on the next cycle

Once the instruction in Decode has all of its operand values, it can advance

If the forwarded value is the last one it needs, a cycle is saved over waiting
for the result to be put in the register

