
CmpSci 535
Computer Architecture

Intro
Chip Weems

weems@cs.umass.edu

https://people.cs.umass.edu/~weems/homepage/index.html

https://people.cs.umass.edu/~weems/homepage/courses/index.html

Office: CS 342

Office hours: Monday after class until 11:30, drop-ins, appointments

mailto:weems@cs.umass.edu
https://people.cs.umass.edu/~weems/homepage/index.html
https://people.cs.umass.edu/~weems/homepage/courses/index.html

Web Page https://people.cs.umass.edu/~weems/homepage/courses/index.html

https://people.cs.umass.edu/~weems/homepage/courses/index.html

Links to class notes

Note page contents

Slides in pdf form

Brief description of what was covered

Any handouts as pdfs

Announcements

I will try to get these up within a day, but may occasionally fall behind due to
other work, etc.

535 Course Goals

See how computers really work

Learn what factors affect their progress

Design and simulate one to better understand tradeoffs and operation

Compare some common architectures

Explore acceleration mechanisms

Grading
18% Reading Homework
10% Class work/participation
4% Exam Prep Homework
10% Midterm
10% Final
15% Team Project Phase 1
14% Team Project Phase 2
14% Final Project Report
5% Team effort

Reading Homework
For each reading on the schedule write 2+ questions

Starts with February 3, ends April 29

Due when indicated on schedule

No credit if late unless prearranged

Extra credit if early (10%) or extra questions (up to 5) or extra readings

18 readings, each 1%

Class Work/Participation
There will be various in-class exercises

Some will help start the project

Others will solidify understanding of operation of architectural mechanisms

Usually done in a team or group setting

Can only be done in class (unless there is a prearranged absence)

Number will be adjusted according to time available — 10% total

Exam Prep Homework

Do on your own, to assess preparedness for exam

Will be very similar to exam questions

Can’t cover everything on exam (has to be written over a week before)

Get feedback prior to exam to help with studying

Each is 2%

Exams
Open book, open notes

Bring a calculator

Will mimic homework questions

Some questions may be on the project

Midterm and final, 10% each

Final only covers material after midterm

Team Project
Create an instruction set architecture (ISA) and implement a simulation of it

The assembly language view of the machine

Phase 1: Design the ISA, Implement a memory subsystem, Implement a simulator

Simulator has cache, pipeline, timing, basic UI, minimal subset of instructions

Phase 2: Complete implementation of instructions and UI, with an assembler. Evaluate
performance on at least two benchmarks

Initial design proposal, series of demos, a final report

Handout has details — also on course web page

Instruction Set
Architecture (ISA)

The raw assembly-language view of the machine, with no libraries or OS
calls

Designing one is an experience engineering tradeoffs

Support basic ops on integers, memory access, control flow

See course web site for a writeup

Project Grading Theme

Meeting the minimal requirements is a B

Falling short, getting behind schedule is less

Taking initiative to go beyond requirements will earn a higher grade

Many opportunities for extra credit

ISA Extra Credit

Unusual features (special purpose, low power, secure, etc.)

Special instructions (useful extensions, purpose-oriented, etc.)

I/O devices (graphics, simulated sound, controls, network, etc.)

Check with me before going too far -- it still needs to be feasible for
implementation

Develop a Simulator

Software represents all state in the machine: registers, memory, status,
mode...

Loads a binary program from a file

Interprets instructions in proper order, updating simulated state same as
hardware

Like a VM in many ways

First step: Memory and Cache
Memory (RAM) is slow (100 cycle access)

Cache holds recently used instructions and data in a small, fast memory

General memory unit class can instantiate as any level of cache or RAM

Instantiate RAM with null pointer to lower level

Cache has pointer to RAM (or to another cache level)

Basically a large integer array, where the index is the address

Basic Cache

Direct-mapped

4 words per line

Write-through, no allocate

Unified

Single cycle access (forward any wait response from lower level)

Cache Extras

Associative caches — 2 or 4 way

Alternate policies — wire back allocate, FIFO/LRU replacement, etc.

Line length can be set (should be same at all levels)

Additional levels (easy with generic memory class)

Split Instruction/Data at top level

Initial Simulator

Has cache and at least 5-stage pipeline

Displays count of clock cycles

Basic UI to display internal state, selected area of memory

Single step execution

Load/save programs, reset state

More Initial Simulation
Minimal instructions (load, store, ALU, conditional branch)

Enough to run a simple looping program

Instructions in binary (do NOT use strings)

Only one memory -- holds code and data

Ability to select area of memory to view

Modes to run with cache and/or pipeline disabled

Pipeline
Instructions pass through fetch, decode, execute, memory, write-back stages

Each stage holds a different instruction -- provides parallelism

Instructions may have dependences that cause stalls

Branches can cause flushes

Can be turned off

Each instruction is added to the pipe after previous one exits write-back

Pipeline Extras

Longer pipe

Forwarding

Branch prediction

Interrupt handling

Superscalar (multiple pipes)

Project Strategy
Cache and memory is easiest (comes first)

Initial will take longer to implement - pipeline is challenging

Just enough instructions to ensure cache and pipe are working

Then adding more instructions is step-by step process

At same time, can build assembler, extend UI, to simplify development

Last step is writing benchmarks on top of working system

Full Simulator Extras

Nicer, more flexible UI

Macro assembler/mini-compiler

More display modes (decimal, binary, floating point, string, instruction)

Efficiency/speed tuning

Getting ahead of schedule

Example UI

Another UI

Benchmarks

Standard programs to evaluate performance

At least integer exchange sort and matrix multiply (extra credit for more)

Data set must be big enough to more than fill cache and require at least
10 accesses per line

Compare performance on all four modes of the simulator

No cache or pipe, cache only, pipe only, cache and pipe

Software Engineering

Part of the project is to use good development methodology and tools

Will be part of demos and reports

Manage code in a repo, use a unit testing system, keep a punch list, use a
wiki for documentation, etc.

Reports

ISA Report -- complete description of the architecture, project management
plan, team task assignments

Final report -- amended ISA report plus simulator operation description,
user manual, summary of software engineering methods applied, who did
what, benchmark results analysis, what you have learned

Report Drafts

First draft will be reviewed, given an interim grade with comments

Final version can address comments, and its grade will replace the first one

Lateness affects grade -- better to submit a partial draft and get feedback,
since final version grade replaces draft

Report Due Dates

First report draft: Wed., 2/12

First report final: Wed., 2/24

Final report draft: Wed., 4/22

Final report final: Thu., 5/7 (at final exam)

Demos

ISA presentation: Wed., 2/12 (brief overview)

Memory/cache, timing demo: Mon., 3/2

Initial Simulation: run simple looping program: Mon., 3/23

Full ISA, UI, assembler: Wed., 4/8

Benchmark execution: Wed., 4/22

Team Formation

Next week, after add/drop settles

You can form your team early

Can also do project solo, but more work

Joining a team is a commitment -- withdrawing will have a lasting impact

Team Size

Optimal is two people

Three only if a very ambitious project with a strong management plan

If you’re not sure that you’ll stay in the class, don’t form a team early

Membership may change in early classes

Project will start gradually during this time

First Team Meetings

Exchange email, contact info

Schedule regular team meeting time

Plan collaboration strategy

Talk about skill sets

Decide on team organization

Read the Project Handout Carefully

It answers the most common questions

It has a lot of useful information/advice about the project

It includes all of the demo dates and descriptions of what is expected

You have access to it when you can’t reach me to ask questions

Survey

Not a test -- just guidance for depth

If you immediately know an answer, just write down enough to show that
you do

If you sort of remember it, then write something like “saw it before,” or
“heard about it.”

If it’s new to you, just put an X

Historical Perspective
How we got here and, where exactly is here?

Early Computing

☝

Others:

Abacus, knots, stones

Functional Generations

1st: Memory aids -- increased accuracy, size of numbers
2nd: Automatic arithmetic -- greater accuracy, more complexity
3rd: Programmable -- extends accuracy to complex functions
4th: Reliable -- unlimited complexity, broader use, faster (to do more)
5th: Pervasive -- tolerate some failures

0th Tech Generation

What did the earliest computing aids do for us?

What effect did the next group have?

What was the original definition of “computer”

1st Tech Generation
What did electronic computers enable?

What were the problems?

2nd Tech Generation

Why switch to transistors?

What are their advantages?

3rd Tech Generation
Integrated circuits

What are their main advantages?

Note change in memory technology

4th Tech Generation

Microprocessor

Just more of the same -- why such a big deal?

Microprocessors
First were a huge step backward

Grow in word size, add multiprocessing

Then add pipeline parallelism (faster clock)

Cache memory; one then multiple levels

Superscalar (multiple pipelines)

Multithreading

5th Tech Generation
Parallel

Conceived with first computers

Why did it fail to take off?

Why is it now taking over? 1972

20132016

Hitting the Wall

Faster clock needs more power

Power becomes heat

Heat slows circuits, increases power, wearout

Greater complexity consumes more power for diminishing speedup

Longer relative distances for signals

Punctuated Equilibrium

Gradual progress, then cross
threshold

Tend to reimplement earlier designs

Then new designs appear

Shakeout leads to stable, gradual
progress

De
sig

n
In

no
va

tio
n

0

7.5

15

22.5

30

Time
1 2 3 4 5 6

Parallelism

Multiple cores don’t require common clock

Easy utilization of chip area

Keep clock constant, but increase performance

Flexible power management

Immediately available parallel workloads

More Parallelism
Run out of easy workload distribution

Harder to find work to drive 24-cores

Shared memory becomes bottleneck

Hierarchy of sharing

One size doesn’t fit all -- heterogeneity

Challenges dominant programming model

Much more insidious bugs

The Future
Low end eats profits, cuts R&D

Potential for stagnation at high end

Likely to involve government support

Greater diversity, heterogeneity, more embedded

Technology shifts in memory construction - DRAM scaling ending

New programming models: confusion precedes convergence

