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The Wisdom of Crowds: “the aggregation of

Information In groups, resulting in decisions that
[...] are often better than could have been made
by any single member of the group.”

Wikipedia
15 Dec 2011



How efficiently (and accurately)
can you approximate the crowd?
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Problem Setting

You have a roomful of people
Each can give answers to yes/no gquestions that you pose
Each time you ask anyone for an answer, it costs you

The “correct” answer 1s the majority vote of the room



Problem Addressed

* (How) Can you guess the majority vote of the
crowd without asking everyone for their answers?



Problem Addressed

* (How) Can you guess the majority vote of the
crowd without asking everyone for their answers?

* (How) Can you do this “on line,” learning to
approximate the crowd during the act of
approximating the crowd?



What This Is Not

» Polling
— No demographic information to generalize from



What This Is Not

» Polling
— No demographic information to generalize from

* Estimating “ground truth”
— “Truth” 1s crowd-specific



Key ldeas

1. Associate a weight with each labeler based on
performance on past items
— Weight = labeler accuracy
— Do the right Bayesian smoothing on these weights

a;; + K
Cit T 2K

Qit =

Qi The weight of labeler I after seeing item t

Cit
.
K, 2

How many times we asked 1 about items
How many times I was right

K: Beta-binomial distribution with o = K and = 2K



Key ldeas

2. Mix exploration and exploitation

— Exploitation: Select the labelers for each item
based on the weights

— Exploration: Select a random labeler for each item



Key ldeas

3. Build up the set of labelers dynamically for
each item

— Start with 3 labelers

 Exploitation: Pick 2 based on weights
 Exploration: Pick 1 uniformly at random

— Get thelr answers

— Keep adding labelers and getting their answers
until you’re confident with the prediction
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Key ldeas

4. ‘“‘until you’re confident with the prediction™:

If the next best labeler has enough weight to change
the vote (or come close), add it in

IScore(.S;)| — Q;
1Sy + 1

Landldate <

Low &: Exploitation
High &: Exploration



The CrowdSense Algorithm

1. Input: Examples {x,.x,,..., 7y}, Labelers {l;,l5,... {3}, confidence threshold =,
smoothing parameter i .

2. Define: Ly = {I'V), ... I/M)} labeler id’s in descending order of their quality estimates.

3. Initialize: a;; < 0, ¢;7 «— Ofor: =1,.... M.

4. Loopfort =1,.... N

(a) Compute quality estimates ();; = autk .1 .. M.Update Lg.
r4e+2R o

(b) S = {I'V, 1%k}, where k is randomly sampled from the set {1, .. [}
(c) Loopforj=3.. .M. j#Ek
i Score(S:) =2 ics, VaeQits leandidae =1/
. Score(Se )| —CQ._ a0 . .
i If (Seore(5u)|~—Qloandidgre < £, then S; + S; U langigee. Otherwise exit loop to stop

_ EAES
adding new labelers to S;.

(d) Get the weighted majority vote of the labelers Vg, = sign (3, o ViiQu)
(e) ¥i c S; where Vj; = I"iﬁ:tf._ aip +— a3 + 1
{ﬂ Vi 51,. Cip — O + 1

5. End

© Seyda Ertekin, Haym Hirsh,
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Evaluation

# of Labelers Type of Labeler

Movielens 11 Human
ChemlR 11 Software
Reuters 13 Learned classifiers

CSS Workshop 17 Dec 2011 © Seyda Ertekin, Haym Hirsh,
and Cynthia Rudin



S

Baseline Methods

The accuracy of the overall best labeler (in hindsight)
Mean accuracy of the labelers
The accuracy of unweighted random labelers

IEThresh:

Order labelers using the upper confidence interval for the
probability that a labeler will agree with the majority vote
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ChemlIR
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Reuters
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Analysis of CrowdSense Design

MovieLens Dataset

Number of Labels

CSS Workshop 17 Dec 2011

Components of CrowdSense:

1. Composition of the initial seed
set of labelers

2. How subsequent labelers are
added to the set

3. The weighting scheme that
affects 1, 2, and combining the
votes of the individual labelers.

© Seyda Ertekin, Haym Hirsh,
and Cynthia Rudin



Future Work

* Beyond classification

* Greater number of labelers
(CrowdSense 2)

e |tem features
e Labeler features

« Still early, other algorithms possible
— Active learning
— Sleeping experts
— Budget-sensitive learning



Summary

* Introduced the problem of approximating
the wisdom of crowds

* Developed an algorithm for approximating
the wisdom of the crowd
— Balance exploration and exploitation

— Select labelers based on past accuracy
(with appropriate smoothing)

— Incrementally accrues only enough labelers to
reach some confidence in prediction



