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Abstract
The problem of learning by aggregating the opinions or knowledge of multiple sources
does not fit the usual single-annotator learning scenario. In these problems, ground-truth
may not exist and multiple annotators are available. In particular, active learning offers
new challenges as, in addition to a data point, a knowledge source must also be optimally
selected. This is of interest in a crowdsourcing setting as annotators may have varying ex-
pertise or be be adversarial; thus, the information they can offer will vary considerably. We
propose an approach to address this situation by focusing on maximizing the information
that an annotator label provides about the true (but unknown) label of data points.

1 Introduction
The traditional supervised learning scenario assumes that there is a single labeler/annotator (domain expert)
that provides the necessary supervision. Such expert labels are considered the ground-truth. In settings
involving automatic knowledge aggregation, such ground-truth labels may not be available and instead the
information provided by multiple experts/non-experts (knowledge sources) need to be efficiently leveraged.

Machine learning approaches that address the multiple-annotator scenario in various settings have gained
great interest recently [10, 17, 15, 6]. However, a consistent strategy for the active learning problem [7, 8] to a
large extent is missing. In active learning, an algorithm is allowed to choose the samples from which it learns.
In traditional active learning, an optimal sample is sought to be labeled by a knowledge source or process that
is considered unique (i.e., the varying level of expertise of multiple sources is mostly ignored). In contrast, in
the crowdsourcing setting active learning additionally requires choosing from multiple knowledge sources.
Since some annotators may be more reliable, some may be malicious, and their expertise may vary with the
observed sample, clearly choosing an appropriate annotator is critical.

The presented approach focuses on maximizing the information that the chosen annotator label provides
about the true (but unknown) label. Various ideas similar in spirit to the active learning scenario include:
repeated labeling [14, 4, 13], the process of identifying labels that should be revised in order to improve
classification performance, and more recently [9], a manner of learning where annotators are chosen ran-
domly and then their responses corroborated using a separate model. The presented approach shares the
motivation in [16] and to a lesser extent in [5, 1], but differs in the active learning criterion (Secs. 2-3).

2 Formulation
We consider a set of N data points X = {x1, . . . ,xN} drawn independently from an input distribution.
Let us denote Y = {y(t)i }it with y(t)i the label for the i-th data point given by annotator t. The labels from
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individual labelers might be incorrect, missing, or inconsistent with respect to each other. We introduce
additional random variables Z = {z1, . . . , zN} to represent the true but usually unknown label for the
corresponding data point. If we do not have access to ground-truth, all zi are unobserved. We concentrate
on this general case; however, in some problem instances partial ground-truth may exist. Some labels y(t)i
are observed, but in general it is expected that they are sparse and thus acquiring them optimally is of interest.

We let the annotation provided by labeler t to depend on the true (but unknown) label z and the input data
point x. As in [16], our motivation for this is that annotators may label certain data points with better
accuracy than other data points and that this accuracy may depend on the properties of the data point itself.
That is, their accuracy depend on the input being presented. In addition, labelers are assumed independent
given the input data point and the true point label. A model consistent with the above can be given by

p(YO|X) =
∏
i

∑
zi

p(zi|xi)
∏
t|t∈Ti

p(y
(t)
i |xi, zi), (1)

which represents the distribution for the observed labels YO ⊂ Y conditioned on the input data, where Ti
is the set of annotators that labeled the i-th data point. For binary classification, we employ a Bernoulli
distribution to model annotator labels. However, we let its parameter(s) depend on the observed input:

p(y
(t)
i |xi, zi) = (1− ηt(x))|y

(t)
i −zi|ηt(x)

1−|y(t)i −zi|; with ηt(x) = (1 + exp(−wT
t xi − γt))−1. (2)

Similarly, for the true label distribution z|x we let p(zi = 1|xi) = (1 + exp (−αTxi − β))−1.

For active learning we address the pool-based setting, where a number of unlabeled data points are si-
multaneously available for selection. For iteration τ we let the set YU (τ) ⊂ Y with U = {(k, s) ∈
{1, ..., N}×{1, ...T}|y(s)k is unobserved} represent the labels that are unknown to the learning algorithm. As
this is an iterative process, the set U varies across iterations. At each iteration τ , one tuple (k∗, s∗) ∈ U(τ) is
chosen and the appropriate data point xk∗ is shown to labeler s∗ for annotation. We use mutual information
[2] as the criterion for optimally choosing the tuple (k∗, s∗) ∈ U(τ). Given this, the active learning problem
is cast as follows:

[k∗, s∗] = arg max
(k,s)∈U

I(zk; [y
(s)
k , xk]|X,YO), (3)

where the information score is conditioned on having observed X and YO: the available data points and the
labels provided by any annotator. We have assumed a given τ and thus removed U ’s dependency on it to
ease notation. This maximization can be expressed in terms of the corresponding conditional entropies:

= arg max
(k,s)∈U

∑
zk,ysk

p(zk|[ysk, xk]; θ) log p(zk|[ysk, xk]; θ)−
∑
zk

p(zk|θ) log p(zk|θ). (4)

In the above we have utilized a maximum likelihood estimate for the model parameters θ to calculate the
information and therefore implying that all the information provided by the dataset is summarized by θ given
the model structure. A MAP and Bayesian approach would follow in a similar manner.

From the model conditional independence assumptions, the first term can be written as p(zk|ysk,xk; θ) =
p(zk|xk; θ)p(ysk|xk, zk; θ)/

∑
zk
p(zk|xk; θ)p(ysk|xk, zk; θ)

The second term can be estimated by observing p(zk|θ) =
∫
p(zk|xk; θ)p(xk), since θ does not affect the

prior p(xk). An approximation q(zk) ≈ p(zk|θ) can be obtained using X as a suitable sample from the
prior distribution. Thus, we let: q(zk) = 1

N

∑
xk∈X p(zk|xk; θ). Note that for this we have also made the

standard assumption that the true distribution for z is consistent with the employed model.

Thus, the original optimization problem can then be solved by finding [k∗, s∗]:

[k∗, s∗] = argmax
k,s
−
∑
zk

q(zk) log q(zk) +
∑
zk,ysk

p(zk|ysk,xk; θ) log p(zk|ysk,xk; θ). (5)
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Figure 1: Accuracy and AUC for multi-labeler datasets as a function of number of active learning iterations.

This can be computed in O(NT ) once the appropriate distributions are known. The distributions for the two
terms in the objective function require O(|Z||X ||X |) and O(|Z||Y||X |) respectively for a given θ. For an
efficient implementation, we calculate (for the first term) the entropy H(zk) at every iteration for each data
point xk that could be labeled. Likewise (for the second term), we calculate the appropriate entropy for each
pair (k, s) still unlabeled. Note that after a data point is selected for labeling, this point may not necessarily
be eliminated from the pool as it may be selected in the future for labeling by a different annotator.

For learning, we employ maximum likelihood to estimate θ = {α, β, {wt}, {γt}} and use the Expectation
Maximization algorithm [3] to maximize the conditional distribution for partially observed labels, Eq. 1. For
inference, one can show that the task of inferring z for a new data point x is equivalent to calculating the
conditional distribution p(z|x) (given earlier).

3 Experiments

For the rest of the paper we will refer to our algorithm as ML+CI*, where the prefix (ML) or Multiple
Labeler refers to the nature of the classification algorithm, while the suffix (CI) or conditional information
refers to the active learning strategy employed. The * symbol indicates that the algorithm selects the optimal
labeler and point simultaneously. We consider several alternatives for selecting the samples and annotators:

1. ML+QBC (Multi-Labeler utilizing Query by Committee): utilizes the same multiple-labeler model as
our approach but applies QBC[12] to select the optimal point to be labeled and any annotator (uniformly at
random). Basically, without regard for annotator differences.
2. ML+Uncert* (Multi-Labeler utilizing Uncertainty): utilizes the same multiple-labeler model as our
approach but selects the sample and annotator based on the combination of uncertainty of label and annotator
confidence given the data point η(x) (see Eq. 2). This is the approach recently proposed in [16].
3. ML+Random Pick: utilizes the same multiple-labeler model but selects samples and annotators at random.

We test the different methods on scientific texts (PubMed and GeneWays corpus) prepared and made publicly
available by [11]. This is a corpus of 10, 000 sentences, each annotated by 3 out of 8 available labelers. Each
sentence was associated with several labels. We use the binarized polarity, focus, and evidence labels. We
utilize a 1000-example subset where each sentence has been labeled by 5 annotators and a bag of words
representation with 392 dictionary features. We randomly selected 300 samples as the initial training for the
four competing methods, 300 points for active learning, and 400 points for testing. The 10-fold average test
set AUC for the various (methods,tasks) pairs at each iteration is shown in Fig. 1.

The proposed ML+CI* model achieved the best overall performance followed mostly by ML+QBC. This
helps validate the information criterion utilized which allows for jointly optimizing for the sample-annotator
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Figure 2: Left: Model accuracy (2/5 adversaries); Center: proportion of adversaries queried; Right:
ML+CI* accuracy (2/5 and 5/5 adversaries).

pair. ML+QBC achieves a reasonable performance because like our model, it selects the most informative
sample; however, it assumes all annotators are equally good. ML+Uncert* selects the most uncertain sample
and the most confident annotator. However, choosing the most uncertain sample, may be suboptimal for
improving classification performance, due to noise, outliers, or unimportant regions of interest.

We now investigate how adversarial labelers can hurt the performance of our approach, ML+CI*. We con-
jecture that since our model selects annotators in each learning step, it can avoid or decrease the influence
of these bad annotators. To simulate adversarial annotators, we randomly flip labels of points in the active
learning pool with probability, pε. We performed the following experiments:

1. We compared the performance of ML+CI* (for each active learning step) to ML+QBC as we vary pε ∈
{0.1, 0.2, 0.3, 0.4} on two annotators. Larger pε leads to more aggressive adversaries. Due to limited space,
we utilize ML+QBC as the comparative method because it had the second best performance in the previous
set of experiments. To save space, we also show only the results on the evidence task. Similar results were
obtained for the rest of the tasks. These are shown in Fig. 2(Left). These figures confirm that indeed ML+CI*
helps reduce the effects from bad annotators compared to ML+QBC.
2. In Fig. 2(Center), we report the proportion of adversarial annotators selected as we vary pε. This result
indicates that our approach ML+CI* is able to avoid malicious annotators better than ML+QBC.
3. In Fig. 2(Right), we show a comparison for our approach ML+CI* when a) all five annotators are ma-
licious and when b) only two annotators are malicious. As expected, ML+CI* would perform worse as
pε is increased and the drop in performance is less when there are fewer adversaries; however, the model
maintains an acceptable performance that degrades slowly even when all labelers are not very accurate.

4 Conclusion

In this paper we developed and evaluated an approach for active learning in a multiple-annotator setting. In
this new scenario, contrary to the traditional single labeler setting, an optimal sample- annotator pair must be
determined. This adds an interesting and challenging dimension to active learning because some annotators
may be more reliable than others, some may be malicious, and their expertise may vary with the observed
sample. Thus, active learning is necessary as the information provided by some annotators is more valuable
than that provided by others; moreover, the annotator value may depend on the specific unlabeled sample
being considered. Our results show that the proposed approach outperforms several baseline and recently
proposed methods in terms of both accuracy and area under the ROC curve (AUC). Similarly, our study
comparing the resilience of these methods to malicious annotators reveals that our approach is robust in the
sense that it largely avoids querying malicious annotators automatically. We believe this study on a new
problem opens up interesting questions/directions for future research.
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