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Abstract

The “wisdom of the crowd” effect refers to the phenomenon that the mean of
estimates provided by a group of individuals is more accurate than most of the in-
dividual estimates. This effect has mostly been investigated in general knowledge
or almanac types of problems that have pre-existing solutions. Can the wisdom
of the crowd effect be harnessed to predict the future? We present two probabilis-
tic models for aggregating subjective probabilities for the occurrence of future
outcomes. The models allow for individual differences in skill and expertise of
participants and correct for systematic distortions in probability judgments. We
demonstrate the approach on preliminary results from the Aggregative Contingent
Estimation System (ACES), a large-scale project for collecting and combining
forecasts of many widely-dispersed individuals.

1 Introduction

When a group of people make an estimate about a quantity, often the mean of these estimates is
better than the majority of the group [1]. The so called wisdom of the crowd (WoC) phenomenon
is typically studied in the context of a single magnitude estimate (e.g., the weight of an oxen [2]).
However, the WoC effect has recently been studied in a variety of other tasks involving more com-
plicated sources of information such as rank-ordering tasks [3-5]. The aggregation models for these
tasks have demonstrated that it is possible to infer people’s expertise or skill directly from the an-
swers they provide. These latent measures of expertise outperformed self-report measures such as
confidence ratings, in terms of correlation with the actual accuracy of the answers.

In this paper, we develop probabilistic models for the aggregation of human judgments in a fore-
casting situation, in which individual differences such as latent expertise play a key role. We build
on previous statistical models [6, 7] that assume that there is a “shared truth” among all participants.
However, it is well-known that subjects are generally biased in their responses, such as responding
with confidence that is higher than their accuracy [9]. As such, many models of confidence treat
these responses as a “distortion” from the true probability.

The models presented in this article include a generative process that explains how individuals pro-
duce their forecasts after some distortion of the aggregate knowledge or shared truth. Because there
are a variety of ways this distortion could occur within the models, we refer to bias as systematic
distortion and random variability as random distortion. The models allow for differences in latent
expertise of the participants as well as question difficulty. In addition, the aggregation models also al-
low for systematic deviations from the shared truth such that the distribution of individual judgments
is systematically distorted from the latent group knowledge. Model parameters related to latent ex-
pertise, question difficulty, and systematic distortion are estimated on the basis of judgments from a
group of participants that provide forecasts on a number of questions. In order to reliably estimate
the systematic distortion parameters, we also require that some subset of forecasting questions have
a known outcome (i.e., they have already resolved).
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We compare the probabilistic aggregation models to a standard linear unweighted average of the
forecasting judgments. Previously, it has been suggested that the unweighted linear average is diffi-
cult to outperform in many forecasting situations [8].

2 Experiment

The forecasting judgments were collected by the Aggregative Contingent Estimation System
(ACES), a large-scale project for collecting and combining forecasts of many widely-dispersed in-
dividuals (http://www.forecastingace.com/aces). Participants involving members of
general public were asked to estimate the probability of future events occurring, such as the outcome
of presidential elections in Taiwan. At first, there were no known answers to any of these questions.
However, the questions were designed such that an answer would be determined at some fixed date.
The data set included the judgments from a one-month period involving 817 participants and 51
questions (18 of which resolved by the time this dataset was put together).

3 Models

We let yi,j represent the probability estimate provided by Subject i on Question j and let xj be the
result of the resolved Question j. For this particular data set, xj is only partially observed. That is,
some questions have not been resolved and thus xj on unresolved questions is treated as a missing
observation.

3.1 Unweighted Linear Average

The base model we used simply calculates the unweighted linear average of the estimates provided
by each of the subjects. Thus, predictions µ̂j for this model are obtained by evaluating

µ̂j =
1

n

(∑
i

yi,j

)
,

where n is the number of responses obtained on Question j.

Despite its simplicity, the unweighted linear average is a formidable estimate for forecasting data.
Some authors have argued that it is impossible to beat the unweighted linear average by more than
20% (e.g., [8]). Thus, our goal in modeling this data is to provide estimates that are better than, or
as good as, the unweighted linear average.

We now present two Bayesian models that each assume a distortion occurs prohibiting subjects
from accurately forecasting the probability of events. We examine this distortion in two ways. The
first model assumes that the probabilities provided by each subject are distorted versions of the true
latent probability on a question-specific basis and the second assumes that the distortion occurs on a
subject-specific basis.

For both Bayesian models, predictions for Question j are obtained by taking the mean of the poste-
rior distribution for µj , or

µ̂j =
1

K

(
K∑

k=1

µj,k

)
, (1)

where K is the number of samples obtained using Markov chain Monte Carlo (MCMC), and µj,k is
the kth sample of the posterior corresponding to µj .

3.2 Question Distortion Model

The first model we examine treats the observed confidence ratings yi,j as perturbations of the latent
mean µj for Question j. The Question Distortion Model (QDM) captures distortion in two ways.
First, the model allows for systematic distortion τj for the jth question. Second, the model assumes
a random distortion process, governed by the dispersion parameter ωj . Modeling the data in this
way allows for a “staggering” effect, which can accommodate any question-specific biases that may
occur.
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The left panel of Figure 1 shows a graphical diagram for this model. Because the subjective proba-
bilities are bounded by zero and one, we used the flexible beta distribution reparameterized to have
mean y′i,j and dispersion parameter η, which was assumed to be fixed across all subjects. The dis-
tortion of the true latent probability occurs at the node y′i,j . We assume that y′i,j is a beta random
variable with mean τj +µj and dispersion parameter ωj . Each of these question-specific parameters
assume a common hyper-distribution.

The data xj influences the mean µj only if Question j has a solution. Otherwise, the mean µj was
estimated on the basis of the individual confidence ratings. Thus, if a question is resolved, then
the posterior distribution for µj will balance the two sources of information by assuming that the
probability of an event occurring is a Bernoulli random variable with mean µj and that the estimates
provided by the subjects are beta random variables with mean equal to µj + τj .

3.3 Individual Distortion Model

The second model we examine is very similar to the QDM. The Individual Distortion Model (IDM)
also captures distortion in two ways. As in the QDM, the IDM assumes a random distortion process
controlled by ωj . Second, the IDM assumes that the systematic distortion is not due to the question-
specific biases, but is due to subject-specific biases.

The right panel of Figure 1 shows a graphical diagram of the IDM. All model specifications were
equal to the QDM, with the exception of the subject-specific distortion parameter. Here, we as-
sume that the y′i,js are beta random variables with mean µj + τi and dispersion parameter ωj .
Both question-specific and subject-specific parameters are assumed to arise from common hyper-
distributions.

Figure 1: Graphical diagrams of the Question Distortion Model (left panel), and the Individual
Distortion Model (right panel).

4 Results

We used JAGS to estimate the joint posterior distribution. For each model, we obtained 1,000
samples from the joint posterior after a burn-in period of 1,000 samples, and collapsed across two
chains. Once estimation was complete, we compared the predictive power of the models relative to
the unweighted linear average. To evaluate the models, we computed the Brier score by calculating

Bj =

2∑
i=1

(Xi,j − φi,j) ,

where φ1:2,j = {µ̂j , 1 − µ̂j} and X1:2,j is the outcome of the jth question with one minus the
outcome of the jth question. For example, if the jth question resolved and the event did occur, then
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X1:2,j = {1, 0}. Thus, the best possible Brier score is zero, and the worst possible score is two. If
an event did not resolve in the one-month duration, the predictions were not scored and they had no
effect on the model’s performance.

Once a Brier score was obtained for each of the three models, we computed the percent improvement
of the two Bayesian models over the unweighted linear average. The QDM was better than the
unweighted linear average at forecasting future events by 4.7%. This is a sizable difference because
the Brier score was obtained on only 18 resolved questions. The IDM performed much better,
defeating the unweighted linear average by 9.6% percent. This is a dramatic difference, especially
on so few data.

As a final examination of the model, we plotted the posterior predictive distributions against each
observed probability estimate. Figure 2 shows these results. The predictions of the QDM (left panel)
are markedly different from the predictions of the IDM (right panel). In particular, the predictions
of the QDM seem to cover lower areas of the prediction space than the IDM, and tend to show
little variation as a function of the observed probability estimate. By contrast, the predictions of the
IDM tend to be more variable, possibly due to the increased number of parameters accounting for
individual differences rather than question differences.

Figure 2: The posterior predictive distribution for the QDM (left panel) and the IDM (right panel).

5 Conclusions

In this article, we have illustrated two Bayesian models for improving forecasting accuracy. The
first of these models, the QDM, assumed that any distortion that may be present was due entirely to
the questions that subjects were responding to. This model performed favorably to the unweighted
linear average, increasing estimation accuracy by 4.7%.

The second model we examined was very similar, but altered the assumption about where the dis-
tortion from the true latent probability occurred. The IDM model assumed that the distortion was
a subject-specific process. Modifying this one assumption resulted in a major improvement in the
model performance. The IDM surpassed the unweighted linear average by 9.6%, more than twice
the improvement obtained by the QDM.

Acknowledgments

MS acknowledges support from the Intelligence Advanced Research Projects Activity (IARPA) via
Department of Interior National Business Center contract number D11PC20059. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC,
or the U.S. Government.

4



References

[1] Surowiecki, J. (2004). The Wisdom of Crowds. New York: Random House.

[2] Galton, F. (1907). Vox Populi. Nature, 75, 450-451.

[3] Steyvers, M., Lee, M.D., Miller, B., & Hemmer, P. (2009). The Wisdom of Crowds in the Recollection of
Order Information. In Y. Bengio and D. Schuurmans and J. Lafferty and C. K. I. Williams and A. Culotta (Eds.)
Advances in Neural Information Processing Systems, 22, pp. 1785-1793. MIT Press.

[4] Lee, M. D., Steyvers, M., de Young, Mindy, & Miller, B. (in press). Inferring Expertise in Knowledge and
Prediction Ranking Tasks. TopiCS.

[5] Yi, S.K.M., Steyvers, M., & Lee, M.D. (in press). The Wisdom of Crowds in Combinatorial Problems.
Cognitive Science.

[6] Batchelder, W.H. & Romney, A.K. (1988). Test theory without an answer key. Psychometrika, 53, 71-92.

[7] Merkle, E.C., & Steyvers, M. (2011). A Psychological Model for Aggregating Judgments of Magnitude.
Conference on Social Computing, Behavioral Modeling, and Prediction, 11.

[8] Armstrong, J. S. (2001) Principles of Forecasting. Norwell, MA: Kluwer Academic.

[9] Kahneman, D. & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica,
47, 263-291.

5


