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Abstract

In supervised learning when acquiring good quality labglladrd, practitioners
resort to getting the data labeled by multiple noisy anmo$atVarious methods
have been proposed to estimate the consensus labels foy bimd categorical
labels. A commonly used paradigm to annotate instances wiefabels are
inherently subjective is to use ordinal scales. In this paye propose annota-
tor models based on Receiver Operating Characteristic jROQe analysis to
consolidate the ordinal annotations from multiple anrm&at The models lead
to simple Expectation-Maximization (EM) algorithms thatimate both the con-
sensus labels and annotator performance jointly. Expetsnadicate that the
proposed algorithm is superior to the commonly used mgjwudting rule.

1 Introduction

Most supervised learning algorithms expect a well defingekstision for the training instances in
the form of labels. With the advent of crowdsourcing sersit@gmazon’s Mechanical Tutk AMT
being a prime example) it has become relatively easy angharesive to acquire labels from a large
number of annotators in a relatively short amount of timewkheer one drawback of crowdsourcing
is that we do not have control over the quality of the anneogatm order to get good quality labels
requestors typically get each instance labeled by mulipleotators and these multiple annotations
are then consolidated either using a simple majority votirig or more sophisticated methods that
model and correct for the annotator biases.

A commonly used paradigm to annotate instances when thislateeinherently subjective is to use
ordinal scalesvhere the annotator is asked to rate an instance on a ceisanet# ordinal scale say
{1,..., K}. For example, rating a restaurant on a scale of 1 to 5, orsiegethe malignancy of a
breast lesion on a BIRADS scale [BIR, 1995] of 1 to 5. An ordlstale expresses rank and there
is an implicit ordering in the labels < ... < K. Recently a lot of methods have been proposed
for consolidating théinary andcategoricallabels from many different annotators that model and
correct for the annotator biases [Dawid and Skéne, 11979 ttseat\al. [ 1995, Raykar et al., 2009,
2010] and/or task complexity [Carpenter, 2008, WhiteHithk, 12009, Welinder et al., 2010]. The
main contribution of this paper is to extend these ideas dinat scales and propose a method to
consolidate the discrete ordinal annotations from muétiphnotators Our annotator models [2)

are based on Receiver Operating Characteristic (ROC) sisal/e propose two models, one based
on empirical ROC model and the other a parametric binorma& R@del. Both these models lead to
simple EM algorithms that estimate both the consensusdatyel the annotator parameters jointly.
Experiments on data from different domains indicate thatgtoposed algorithm is superior to the
commonly used majority voting rule. The ROC based modele lzavadded advantage that the
annotators can be ranked using the area under the estimatedve. This is especially useful for
crowdsourcing services to rank the annotators (for mogpétaentives) and to weed out low quality
annotators.
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Figure 1:(a) The ROC model for an annotator with = 5 ordinal scales. Each annotator is modeled by the
sensitivity and specificity for each threshold £ 1,...,5). The dotted line shows the empirical ROC curve
and the smooth line the parametric binormal ROC curve. (I8)l&tent decision variable binormal ROC model.

We will first discuss two commonly used methods to consodidatdinal annotations. Let
yl,...,yM € {1 < ... < K} be the ordinal scales assigned toifiénstance by thé/ annotators,
and lety; be the actual (unobserved) label.

Direct averaging One method we have sometimes seen used (but incorrect) solatate ordinal
scales from multiple annotators is to average them, thgt is, (1/M) Zj]\il y!. The ordinal values
only express an order and hence we cannot directly averagatihgs. When using an ordinal scale,
the central tendency can be described by the median but the caanot be defined [Stevens, 1946].
For example, a BIRADS score of 5 means the lesion is more matigthan a score of say 3, which
is more than a score of 1. But we cannot compute the differbatgeen two values, because the
difference between 5 and 3 may not be comparable to the elifterbetween 3 and 1.

Categorical labels Sometimes for simplicity the ordinal labels as considergdgorical and meth-
ods proposed for categorical labels are used to consoltdat@annotations [Raykar etlal., 2010,
Ipeirotis et al., 2010]. Treating ordinal labels as categdimplicitly ignores the order information.

Majority voting rule A commonly used strategy is to use the labels on which the nityajaf the
annotators agree as an estimate of the actual lghet, arg max, Prly; = k] where Pfy; = k] =
(1/M) Z;‘il d(y], k), whered(s,t) = 1if s = t and0 otherwise. Majority voting implicitly
assumes that all annotators are equally good. A drawbackoefdsourcing is that we have no
control over the quality of the annotators. For examplehdré is only one true expert and the
majority are novices, then majority voting would favor tharites since they are in a majority.

2 Annotator modelsfor ordinal scalesbased on ROC analysis

It is conceptually easier to think of the true label to be bynéhat is,y; € {0,1}. For example in
mammography a lesion is either malignant(1) or benign(@)taa BIRADS ordinal scale is a means
for the radiologist to quantify his uncertainty based on digital mammogram. The radiologist
assigns a higher value of the label if he or she thinks thelatoel is closer to one.

Empirical annotator ROC model Similar to the annotation models used for binary la-
bels [Dawid and Skene, 1979, Smyth etlal., 1995, Raykar,&2@10] we model each annotator by
the sensitivity(true positive fraction) an@pecificity(1-false positive fraction), but the main dif-
ference is that we now define the sensitivity and specifi@tyefach ordinal label (or threshold)
k€ {1,...,K}. Leta, and ] be the sensitivity and specificity respectively of ti& annotator
corresponding to the threshaldthat is,«), := Priy! > k | y; = 1] andfy := Prly! < k| y; = 0]
fork =2,..., K. Note thata] = 1, f{ = 0 andaj,, = 0, 8%, = 1. Hence each annotator is
parameterized by a set®fK — 1) parametery), 53, . . . , a, 3%]. This corresponds to an empiri-
cal ROC curve for the annotator as shown in Elg. 1(a). Thewandar the empirical ROC curve (area
under the dotted line in Fifl 1(a)) can be computed as AECG1/2) ZkK:l(ale—i—afc)(ﬁiH —B1),
and can be used as a summary metric to rank the annotatotsagaotators have an AUC close to
one while random annotators (spammers) have an AUC closéto 0



Parametric annotator ROC model The Ilatent decision variable(LDV) frame-
work [Dorfman and Alf, 11969,/ Pepe, 2004] is a popular conceptuaméwork to develop
parametric ROC models for ordinal scale data. For each atorgt we assume that there is an

unobserved latent continuous variab{ecorresponding to the annotator’s perception ofittiein-
stance, and there afé — 1 decision thresholdalues|c) = —c0] < ¢] < ... < ¢}, < [c) = ]
(see Fig[dL(b)). The annotator assigns the I@lﬁe& k if c,i_l < zf < c,’C Two annotators with

the same discriminatory power may perceive the instanoeitasly but may give different ratings
because their internal decision thresholds are differd@ie binormal form[Pepe, 2004] for the

ROC assumes that the latent variabjehas a separate normal distribution corresponding te 1
andy; = 0, thatis,z | y; = 0 ~ N (2! | 1, (6})?) andz! | yi = 1 ~ N(2] | 1), (7)),
with the assumption that{ > ug. Without loss of generality we can assume tla,%\tl yi = 0

is a standard normal, that isJ = 0 ando} = 1. Hencez/ | y; = 0 ~ N (2! | 0,1) and
2y =1 ~ N(2 | 4, (67)2?) with the assumption that; > 0. Under this model for a
particular false positive fraction (FPE)1-specificity) the true positive fraction (TPF) (sensttiy

can be parameterized as RGG = TPF(t) = @ (o/ + 0 1(t)), t € [0,1], where we
definea? = p? /o7, b7 = 1/07, and® is the cdf of the standard normal distribution. Hence under
the binormal LDV model each annotator is parameterizedsby- 1 parameters, the two ROC

parameteréa’, b7) and theK — 1 decision thresholdg?, ..., ¢} _,). This corresponds to a smooth
binormal ROC as shown in Figuké 1(a). The AUC for the binorR@IC curve is given by [Pepe,

2004] AUC’ = ®(a? /+/1 + (b7)2) and can be used as a summary metric to rank the annotators.

3 Maximum likelihood parameter estimation via EM algorithm

Let D = {y},...,yM}Y, be the observedV ordinal annotations from\/ annotators. Let
y; € {0,1} be the actual (unobserved) binary label for il‘fe_instange and lep = Prly; = 1]
be the (unknown) prevalence of the positive class.det= [ad,...,a% ] and@’ = [33,. .., 5%]

be the sensitivity and specificity vector for different tsiields for annotatojf, with boundary con-
ditionsaf = 1, g{ = 0 andaj, = 0, B, = 1. Given all the observed ordinal annota-

tions D the maximum likelihood estimator of the parametérs= [a!, 3!, ..., a™M, BM p] can

be effectively computed via the EM algorithm [Dempster &tB77] summarized in Algorithin 1
(EM-ROC). Each iteration of the EM algorithm consists of tsteps: an Expectation(E)-step and a
Maximization(M)-step. The M-step involves maximizatiohaolower bound on the log-likelihood
that is refined in each iteration by the E-step. A similar &thon can be derived for the binormal
LDV model. The only complication is that we do not have a clfigen solution in the M-step and
we have to use a gradient descent procedure.

4 Experimental results

We first illustrate the proposed algorithm on a simulated @aintaining 500 instances annotated
on a scale of 1 to 5 by 3 annotators. The annotators were diaduéeccording to the binormal
LDV model. We compare our two proposed algorithms EM-ROGéolaon the empirical ROC
model) and EM-BLDV (based on the binormal latent decisioralde model) algorithms with the
majority voting (MV) rule. FigurdR plots the estimated (doine) and the actual (dotted line)
binormal ROC curve for the three annotators for MV, EM-ROGd &M-BLDV respectively. It
can be seen the MV under estimates the performance of theaors In each plot the solid
black line shows the ROC curve of the estimated consenseéslafhe EM-ROC and the EM-
BLDV algorithms are clearly superior to the majority votingle. We also report experimental
results on some publicly available linguistic and imageaation data collected using the Amazon’s
Mechanical Turk and some medical annotation data. Tdblerimarizes the datasets along with a
brief description of the tasks. Talble 2 summarizes the tefaid all the datasets in terms of the AUC
of the resulting consolidated ground truth. The resultsaaage over 100 bootstrap replications.
The 95% confidence intervals (Cl) are also shown. To compute theracguve use a threshold
of 0.5 on the estimated probabilities. In terms of the AUC EM-ROC and the EM-BLDV have
similar performance and both are superior to the majoritingrule. In practice we prefer EM-ROC
since it is much simpler to implement and also numericallyerstable than EM-BLDV.



Input: Ordinal annotationg] € {1 < ... < K},j =1,..., M(annotators); = 1, ..., N(instances)

Outputs:

—soft probabilistic consensus labels= Priy; = 1|y;,..., 4], Vi=1,...,N.
—annotator empirical ROC curve parameter$, 57, ..., a%, 8% Vi=1,....M
—the prevalence of the positive class= Prly; = 1]

—the empirical AUG for each annotator.

Initialize p; = (1/M) Z;Vil 5(y?, k) via soft majority voting, wheré(s, t) = 1if s = ¢t and 0 otherwise.
repeat
M-step Update the model parameters

Update prevalence < (1/N) SN | ..
Update the annotator ROC curve parametérs=1,... , M,Vk=1,... K.

Z 1 Mi (yz7€) j Zz 1 (1—p )5(yzjv€)
i= , . 1
D T e D SN (i @

E-step Re-estimate the consensus labels

Recompute the probabilistic consensus labgls- 1,..., N asy; < A;p/(Aip + Bi(1 — p)) where

M K

A= H H[% — %+ ]6<yﬂ ® B = H H I BJ 5yl k) @

j=1k=1 j=1k=1

until convergence
Compute the area under the ROC curve AUE 3 Z{,{:l(aiﬂ +a) (Bl — BL).

A binary label can be obtained by applying a threshold (s&y@ 1., . In the experiments reported in this paper we used a corveeggriterion based on the
change in the model parameters. The AUC can be used to sahtinators.

Algorithm 1: EM-ROC: The proposed EM algorithm for the empirical ROC model.

3 annotators 500 instances MV 3 annotators 500 instances EM-ROC 3 annotators 500 instances EM-BLDV
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Figure 2:Results for a simulated data containing 500 instances ataetbbn a scale of 1 to 5 by 3 annotators.
Each plot shows the estimated (solid line) and the actuatgddine) ROC for the three annotators for the
majority voting (MV) and the two proposed algorithms, EM-8@nd EM-BLDV. In each plot the solid black
line is the ROC curve of the estimated consensus labels.
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