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Abstract

In supervised learning when acquiring good quality labels is hard, practitioners
resort to getting the data labeled by multiple noisy annotators. Various methods
have been proposed to estimate the consensus labels for binary and categorical
labels. A commonly used paradigm to annotate instances whenthe labels are
inherently subjective is to use ordinal scales. In this paper we propose annota-
tor models based on Receiver Operating Characteristic (ROC) curve analysis to
consolidate the ordinal annotations from multiple annotators. The models lead
to simple Expectation-Maximization (EM) algorithms that estimate both the con-
sensus labels and annotator performance jointly. Experiments indicate that the
proposed algorithm is superior to the commonly used majority voting rule.

1 Introduction

Most supervised learning algorithms expect a well defined supervision for the training instances in
the form of labels. With the advent of crowdsourcing services (Amazon’s Mechanical Turk AMT
being a prime example) it has become relatively easy and inexpensive to acquire labels from a large
number of annotators in a relatively short amount of time. However one drawback of crowdsourcing
is that we do not have control over the quality of the annotators. In order to get good quality labels
requestors typically get each instance labeled by multipleannotators and these multiple annotations
are then consolidated either using a simple majority votingrule or more sophisticated methods that
model and correct for the annotator biases.

A commonly used paradigm to annotate instances when the labels are inherently subjective is to use
ordinal scaleswhere the annotator is asked to rate an instance on a certain discrete ordinal scale say
{1, . . . ,K}. For example, rating a restaurant on a scale of 1 to 5, or assessing the malignancy of a
breast lesion on a BIRADS scale [BIR, 1995] of 1 to 5. An ordinal scale expresses rank and there
is an implicit ordering in the labels1 < . . . < K. Recently a lot of methods have been proposed
for consolidating thebinary andcategoricallabels from many different annotators that model and
correct for the annotator biases [Dawid and Skene, 1979, Smyth et al., 1995, Raykar et al., 2009,
2010] and/or task complexity [Carpenter, 2008, Whitehill et al., 2009, Welinder et al., 2010]. The
main contribution of this paper is to extend these ideas to ordinal scales and propose a method to
consolidate the discrete ordinal annotations from multiple annotators. Our annotator models (§ 2)
are based on Receiver Operating Characteristic (ROC) analysis. We propose two models, one based
on empirical ROC model and the other a parametric binormal ROC model. Both these models lead to
simple EM algorithms that estimate both the consensus labels and the annotator parameters jointly.
Experiments on data from different domains indicate that the proposed algorithm is superior to the
commonly used majority voting rule. The ROC based models have an added advantage that the
annotators can be ranked using the area under the estimated ROC curve. This is especially useful for
crowdsourcing services to rank the annotators (for monetary incentives) and to weed out low quality
annotators.
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(b) Binormal ROC model

Figure 1:(a) The ROC model for an annotator withK = 5 ordinal scales. Each annotator is modeled by the
sensitivity and specificity for each threshold (k = 1, . . . , 5). The dotted line shows the empirical ROC curve
and the smooth line the parametric binormal ROC curve. (b) The latent decision variable binormal ROC model.

We will first discuss two commonly used methods to consolidate ordinal annotations. Let
y1i , . . . , y

M
i ∈ {1 < . . . < K} be the ordinal scales assigned to theith instance by theM annotators,

and letyi be the actual (unobserved) label.

Direct averaging One method we have sometimes seen used (but incorrect) to consolidate ordinal
scales from multiple annotators is to average them, that is,ŷi = (1/M)

∑M

j=1
yji . The ordinal values

only express an order and hence we cannot directly average the ratings. When using an ordinal scale,
the central tendency can be described by the median but the mean cannot be defined [Stevens, 1946].
For example, a BIRADS score of 5 means the lesion is more malignant than a score of say 3, which
is more than a score of 1. But we cannot compute the differencebetween two values, because the
difference between 5 and 3 may not be comparable to the difference between 3 and 1.

Categorical labels Sometimes for simplicity the ordinal labels as considered categorical and meth-
ods proposed for categorical labels are used to consolidatethe annotations [Raykar et al., 2010,
Ipeirotis et al., 2010]. Treating ordinal labels as categorical implicitly ignores the order information.

Majority voting rule A commonly used strategy is to use the labels on which the majority of the
annotators agree as an estimate of the actual label,ŷi = argmaxk Pr[yi = k] where Pr[yi = k] =

(1/M)
∑M

j=1
δ(yji , k), whereδ(s, t) = 1 if s = t and0 otherwise. Majority voting implicitly

assumes that all annotators are equally good. A drawback of crowdsourcing is that we have no
control over the quality of the annotators. For example, if there is only one true expert and the
majority are novices, then majority voting would favor the novices since they are in a majority.

2 Annotator models for ordinal scales based on ROC analysis

It is conceptually easier to think of the true label to be binary, that is,yi ∈ {0, 1}. For example in
mammography a lesion is either malignant(1) or benign(0) and the BIRADS ordinal scale is a means
for the radiologist to quantify his uncertainty based on thedigital mammogram. The radiologist
assigns a higher value of the label if he or she thinks the truelabel is closer to one.

Empirical annotator ROC model Similar to the annotation models used for binary la-
bels [Dawid and Skene, 1979, Smyth et al., 1995, Raykar et al., 2010] we model each annotator by
the sensitivity(true positive fraction) andspecificity(1-false positive fraction), but the main dif-
ference is that we now define the sensitivity and specificity for each ordinal label (or threshold)
k ∈ {1, . . . ,K}. Let αj

k andβj
k be the sensitivity and specificity respectively of thejth annotator

corresponding to the thresholdk, that is,αj
k := Pr[yji ≥ k | yi = 1] andβj

k := Pr[yji < k | yi = 0]

for k = 2, . . . ,K. Note thatαj
1 = 1, βj

1 = 0 andαj
K+1

= 0, βj
K+1

= 1. Hence each annotator is

parameterized by a set of2(K−1) parameters[αj
2
, βj

2
, . . . , αj

K , βj
K ]. This corresponds to an empiri-

cal ROC curve for the annotator as shown in Fig. 1(a). The areaunder the empirical ROC curve (area
under the dotted line in Fig. 1(a)) can be computed as AUCj = (1/2)

∑K

k=1
(αj

k+1
+αj

k)(β
j
k+1

−βj
k),

and can be used as a summary metric to rank the annotators, good annotators have an AUC close to
one while random annotators (spammers) have an AUC close to 0.5.
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Parametric annotator ROC model The latent decision variable(LDV) frame-
work [Dorfman and Alf, 1969, Pepe, 2004] is a popular conceptual framework to develop
parametric ROC models for ordinal scale data. For each annotator j we assume that there is an
unobserved latent continuous variablezji corresponding to the annotator’s perception of theith in-
stance, and there areK − 1 decision thresholdvalues[cj0 = −∞] < cj1 < . . . < cjK−1

< [cjK = ∞]

(see Fig. 1(b)). The annotator assigns the labelyji = k if cjk−1
< zji < cjk. Two annotators with

the same discriminatory power may perceive the instances similarly but may give different ratings
because their internal decision thresholds are different.The binormal form[Pepe, 2004] for the
ROC assumes that the latent variablezji has a separate normal distribution corresponding toyi = 1

andyi = 0, that is,zji | yi = 0 ∼ N (zji | µj
0, (σ

j
0)

2) andzji | yi = 1 ∼ N (zji | µj
1, (σ

j
1)

2),
with the assumption thatµj

1 > µj
0. Without loss of generality we can assume thatzji | yi = 0

is a standard normal, that is,µj
0 = 0 andσj

0 = 1. Hencezji | yi = 0 ∼ N (zji | 0, 1) and
zji | yi = 1 ∼ N (zji | µj , (σj)2) with the assumption thatµj > 0. Under this model for a
particular false positive fraction (FPF)t (1-specificity) the true positive fraction (TPF) (sensitivity)
can be parameterized as ROCj(t) = TPFj(t) = Φ

(
aj + bjΦ−1(t)

)
, t ∈ [0, 1], where we

defineaj = µj/σj , bj = 1/σj, andΦ is the cdf of the standard normal distribution. Hence under
the binormal LDV model each annotator is parameterized byK + 1 parameters, the two ROC
parameters(aj , bj) and theK−1 decision thresholds(cj1, . . . , c

j
K−1

). This corresponds to a smooth
binormal ROC as shown in Figure 1(a). The AUC for the binormalROC curve is given by [Pepe,
2004] AUCj = Φ(aj/

√
1 + (bj)2) and can be used as a summary metric to rank the annotators.

3 Maximum likelihood parameter estimation via EM algorithm

Let D = {y1i , . . . , y
M
i }Ni=1 be the observedN ordinal annotations fromM annotators. Let

yi ∈ {0, 1} be the actual (unobserved) binary label for theith instance and letp = Pr[yi = 1]

be the (unknown) prevalence of the positive class. Letαj = [αj
2, . . . , α

j
K ] andβj = [βj

2, . . . , β
j
K ]

be the sensitivity and specificity vector for different thresholds for annotatorj, with boundary con-
ditions αj

1 = 1, βj
1 = 0 andαj

K+1
= 0, βj

K+1
= 1. Given all the observed ordinal annota-

tionsD the maximum likelihood estimator of the parametersθ = [α1,β1, . . . ,αM ,βM , p] can
be effectively computed via the EM algorithm [Dempster et al., 1977] summarized in Algorithm 1
(EM-ROC). Each iteration of the EM algorithm consists of twosteps: an Expectation(E)-step and a
Maximization(M)-step. The M-step involves maximization of a lower bound on the log-likelihood
that is refined in each iteration by the E-step. A similar algorithm can be derived for the binormal
LDV model. The only complication is that we do not have a closeform solution in the M-step and
we have to use a gradient descent procedure.

4 Experimental results

We first illustrate the proposed algorithm on a simulated data containing 500 instances annotated
on a scale of 1 to 5 by 3 annotators. The annotators were simulated according to the binormal
LDV model. We compare our two proposed algorithms EM-ROC (based on the empirical ROC
model) and EM-BLDV (based on the binormal latent decision variable model) algorithms with the
majority voting (MV) rule. Figure 2 plots the estimated (solid line) and the actual (dotted line)
binormal ROC curve for the three annotators for MV, EM-ROC, and EM-BLDV respectively. It
can be seen the MV under estimates the performance of the annotators. In each plot the solid
black line shows the ROC curve of the estimated consensus labels. The EM-ROC and the EM-
BLDV algorithms are clearly superior to the majority votingrule. We also report experimental
results on some publicly available linguistic and image annotation data collected using the Amazon’s
Mechanical Turk and some medical annotation data. Table 1 summarizes the datasets along with a
brief description of the tasks. Table 2 summarizes the results for all the datasets in terms of the AUC
of the resulting consolidated ground truth. The results areaverage over 100 bootstrap replications.
The 95% confidence intervals (CI) are also shown. To compute the accuracy we use a threshold
of 0.5 on the estimated probabilities. In terms of the AUC theEM-ROC and the EM-BLDV have
similar performance and both are superior to the majority voting rule. In practice we prefer EM-ROC
since it is much simpler to implement and also numerically more stable than EM-BLDV.
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Input: Ordinal annotationsyj
i ∈ {1 < . . . < K}, j = 1, . . . ,M (annotators),i = 1, . . . , N (instances)

Outputs:
—soft probabilistic consensus labelsµi = Pr[yi = 1|y1

i , . . . , y
M
i ], ∀i = 1, . . . , N .

—annotator empirical ROC curve parameters[αj
1, β

j
1 , . . . , α

j
K , βj

K ] ∀j = 1, . . . ,M
—the prevalence of the positive classp = Pr[yi = 1]
—the empirical AUCj for each annotator.

Initializeµi = (1/M)
∑M

j=1 δ(y
j
i , k) via soft majority voting, whereδ(s, t) = 1 if s = t and 0 otherwise.

repeat

M-step Update the model parameters

Update prevalencep← (1/N)
∑N

i=1 µi.
Update the annotator ROC curve parameters∀j = 1, . . . ,M , ∀k = 1, . . . ,K.

αj
k ←

∑

ℓ≥k

∑N

i=1 µiδ(y
j
i , ℓ)∑N

i=1 µi

, βj
k ←

∑

ℓ<k

∑N

i=1(1− µi)δ(y
j
i , ℓ)∑N

i=1(1− µi)
. (1)

E-step Re-estimate the consensus labels

Recompute the probabilistic consensus labels∀i = 1, . . . , N asµi ← Aip/(Aip+Bi(1− p)) where

Ai =
M∏

j=1

K∏

k=1

[αj
k − αj

k+1]
δ(y

j
i
,k), Bi =

M∏

j=1

K∏

k=1

[βj
k+1 − βj

k]
δ(y

j
i
,k). (2)

until convergence

Compute the area under the ROC curve AUCj = 1
2

∑K

k=1(α
j
k+1 + αj

k)(β
j
k+1 − βj

k).
A binary label can be obtained by applying a threshold (say 0.5) onµi . In the experiments reported in this paper we used a convergence criterion based on the
change in the model parameters. The AUC can be used to sort theannotators.

Algorithm 1: EM-ROC: The proposed EM algorithm for the empirical ROC model.
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Figure 2:Results for a simulated data containing 500 instances annotated on a scale of 1 to 5 by 3 annotators.
Each plot shows the estimated (solid line) and the actual (dotted line) ROC for the three annotators for the
majority voting (MV) and the two proposed algorithms, EM-ROC and EM-BLDV. In each plot the solid black
line is the ROC curve of the estimated consensus labels.
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