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Abstract

Kelly betting is an optimal strategy for taking advantage ofan information edge
in a prediction market, and fractional Kelly is a common variant. We show several
consequences that follow by assuming that every participant in a prediction market
uses (fractional) Kelly betting. First, the market prediction is a wealth-weighted
average of the individual participants’ beliefs, where fractional Kelly bettors shift
their beliefs toward the market price as if they’ve seen somefraction of observa-
tions. Second, if all fractions are one, the marketlearnsat the optimal rate, the
market prediction has low log regret to the best individual participant, and when
an underlying true probability exists the market convergesto the true objective
frequency as if updating a Beta distribution. If fractions are less than one, the mar-
ket converges to a time-discounted frequency. In the process, we provide a new
justification for fractional Kelly betting, a strategy widely used in practice for ad-
hoc reasons. We propose a method for an agent to learn her own optimal Kelly
fraction.

1 Introduction

Consider a gamble on a binary event, say, that Obama will win the 2012 US Presidential election,
wherex dollars risked earnsxb dollars net profit if the gamble pays off. How many dollarsx of your
wealth should you risk if you believe the probability isp? The gamble is favorable ifbp−(1−p) > 0,
in which case betting your entire wealthw will maximize your expected profit. However, that’s
extraordinarily risky: a single stroke of bad luck loses everything. Over the course of many such
gambles, the probability of bankruptcy approaches 1. On theother hand, betting a small fixed amount
avoids bankruptcy but cannot take advantage of compoundinggrowth.

The Kelly criteria prescribes choosingx to maximize the expected compounding growth rate of
wealth, or equivalently to maximize the expected logarithmof wealth. Kelly betting is asymptoti-
cally optimal, meaning that in the limit over many gambles, aKelly bettor will grow wealthier than
an otherwise identical non-Kelly bettor with probability 1[1,3,7,16,17].

Assume all agents in a market optimize according to the Kellyprinciple, whereb is selected to clear
the market. We consider the implications for the market as a whole and properties of the market odds
b or, equivalently, the market probabilitypm = 1/(1+b). We show that the market predictionpm is a
wealth-weighted average of the agents’ predictionspi. Over time, the market itself—by reallocating
wealth among participants—adapts at the optimal rate with bounded log regret to the best individual
agent. When a true objective probability exists, the marketconverges to it as if properly updating a
Beta distribution according to Bayes rule. These results illustrate that there is no “price of anarchy”
associated with well-run prediction markets.

We also consider fractional Kelly betting, a lower-risk variant of Kelly betting that’s popular in prac-
tice but with less theoretical grounding in the appendix. Weprovide a new justification for fractional



Kelly based on agent confidence. In this case, the market prediction is a confidence-and-wealth-
weighted average that empirically converges to a time-discounted version of objective frequency.
We propose a method for agents to learn their optimal fraction over time.

2 Kelly betting

When offeredb-to-1 odds on an event with probabilityp, the Kelly-optimal amount to bet isf∗w,
where

f∗ =
bp − (1 − p)

b

is the optimal fixed fraction of total wealthw to commit to the gamble.

If f∗ is negative, Kelly says to avoid betting: expected profit is negative. Iff∗ is positive, you have an
information edge; Kelly says to invest a fraction of your wealth proportional to how advantageous the
bet is. In addition to maximizing the growth rate of wealth, Kelly betting maximizes the geometric
mean of wealth and asymptotically minimizes the mean time toreach a given aspiration level of
wealth [17].

Suppose fair odds of1/b are simultaneously offered on the opposite outcome (e.g., Obama willnot
win the election). Ifbp−(1−p) < 0, then betting on this opposite outcome is favorable; substituting
1/b for b and1 − p for p, the optimal fraction of wealth to bet becomes1 − p − bp.

An equivalent way to think of a gamble with oddsb is as a prediction market with pricepm =
1/(1 + b). The volume of bet is specified by choosing a quantityq of shares, where each share is
worth $1 if the outcome occurs and nothing otherwise. The price represents the cost of one share: the
amount needed to pay for a chance to win back $1. In this interpretation, the Kelly formula becomes

f∗ =
p − pm

1 − pm

.

The optimal action for the agent is to tradeq∗ = f∗w/pm shares, whereq∗ > 0 is a buy order and
q∗ < 0 is a sell order, or a bet against the outcome.

Note thatq∗ is the optimum of expected log utilityp ln((1 − pm)q + w) + (1 − p) ln(−pmq + w).
This is not a coincidence: Kelly betting is identical to maximizing expected log utility.

3 Market prediction

In order to define the prediction market’s performance, we must define its predictionb, or the equi-
librium payoff odds reached when all agents are optimizing,and supply and demand are precisely
balanced. Recall that the market’s probability implied by the odds ofb is pm = 1/(1 + b). We will
show thatpm is

∑

i wipi.

3.1 Payout balance

The first approach we’ll use is payout balance: the amount of money at risk must be the same as the
amount payed out.

To see this, recall thatf∗

i = (pi −pm)/(1−pm) for pi > pm. Forpi < pm, Kelly betting prescribes
taking the other side of the bet, with fraction

(1 − pi) − (1 − pm)

1 − (1 − pm)
=

pm − pi

pm

.

So the market equilibrium occurs at the pointpm where the payout is equal to the payin. If the event
occurs, the payin is

(1 + b)
∑

i:pi>pm

pi − pm

1 − pm

wi =
1

pm

∑

i:pi>pm

pi − pm

1 − pm

wi.



Thus we want

1

pm

∑

i:pi>pm

pi − pm

1 − pm

wi =
∑

i:pi>pm

pi − pm

1 − pm

wi +
∑

i:pi<pm

pm − pi

pm

wi, or

1 − pm

pm

∑

i:pi>pm

pi − pm

1 − pm

wi =
∑

i:pi<pm

pm − pi

pm

wi, or

∑

i:pi>pm

(pi − pm)wi =
∑

i:pi<pm

(pm − pi)wi, or equivalently

∑

i

piwi =
∑

i

pmwi.

Using
∑

i wi = 1, we get

pm =
∑

i

piwi.

In other words, the market clearing price is the wealth-weighted average prediction of participants.

3.2 Log utility maximization

An alternate derivation of the market prediction utilizes the fact that Kelly betting is equivalent to
maximizing expected log utility. Letq = x(b+1) be the gross profit of an agent who risksx dollars,
or in prediction market language the number of shares purchased. Then expected log utility is

E[U(q)] = p ln((1 − pm)q + w) + (1 − p) ln(−pmq + w).

The optimalq that maximizesE[U(q)] is

q(pm) =
w

pm

·
p − pm

1 − pm

. (1)

Proposition 1. In a market of agents each with log utility and initial wealthw, the competitive
equilibrium price is

pm =
∑

i

wipi (2)

where we assume
∑

i wi = 1, or w is normalized wealth not absolute wealth.

Proof. These prices satisfy
∑

i qi = 0, the condition for competitive equilibrium (supply equals
demand), by substitution.2

This result can be seen as a simplified derivation of that by Rubinstein [13,14,15] and is also dis-
cussed by Pennock and Wellman [11,10] and Wolfers and Zitzewitz [18].

4 Learning Prediction Markets

Individual participants may have varying prediction qualities and individual markets may have vary-
ing odds of payoff. What happens to the wealth distribution and hence the quality of the market
prediction over time? We show next that the marketlearnsoptimally for two well understood senses
of optimal.

4.1 Wealth redistributed according to Bayes Law

In an individual round, if an agent’s belief ispi > pm, then they betpi−pm

1−pm

wi and have a total wealth
afterward dependent on outcomey according to:

1. If y = 1, ( 1
pm

− 1)pi−pm

1−pm

wi + wi = pi

pm

wi

2. If y = 0, (−1)pi−pm

1−pm

wi + wi = 1−pi

1−pm

wi



Similarly if pi < pm, we get:

1. If y = 1, (−1)pm−pi

pm

wi + wi = pi

pm

wi

2. If y = 0, ( 1
1−pm

− 1)pm−pi

pm

wi + wi = 1−pi

1−pm

wi

which is identical.

If we treat the prior probability that agenti is correct aswi, Bayes’ law states that the posterior
probability of choosing agenti is

P (i | y = 1) =
P (y = 1 | i)P (i)

P (y = 1)
=

piwi

pm

=
piwi

∑

i piwi

,

which is precisely the wealth computed above for they = 1 outcome. The same holds true when
y = 0, and so Kelly bettors redistribute wealth according to Bayes’ law.

4.2 Market Sequences

It is well known that Bayes’ law is the correct approach for integrating evidence into a belief distri-
bution, which shows that Kelly betting agents optimally summarize all past information if the true
behavior of the world was drawn from the prior distribution of wealth.

Often these assumptions are too strong—the world does not behave according to the prior on wealth,
and it may act in a manner completely different from any one single expert. In that case, a standard
analysis from learning theory shows that the market place has low regret, performing almost as well
as the best market participant.

For any particular sequence of markets we have a sequencept of market predictions andyt ∈ {0, 1}
of market outcomes. We measure the accuracy of a market according to log loss as

L ≡

T
∑

t=1

I(yt = 1) log
1

pt

+ I(yt = 0) log
1

1 − pt

.

Similarly, we measure the quality of market participant making predictionpit as

Li ≡

T
∑

t=1

I(yt = 1) log
1

pit

+ I(yt = 0) log
1

1 − pit

.

So afterT rounds, the total wealth of playeri is

wi

T
∏

t=1

(

pit

pt

)yt
(

1 − pit

1 − pt

)1−yt

,

wherewi is the starting wealth. We next prove a well-known theorem for learning in the present
context (see for example [4]).

Theorem 1. For all sequences of participant predictionspit and all sequences of revealed outcomes
yt,

L ≤ min
i

Li + ln
1

wi

.

This theorem is extraordinarily general, as it applies toall market participants andall outcome
sequences, even when these are chosen adversarially. It states that even in this worst case situation,
the market performs onlyln 1/wi worse than the best market participanti.

Proof. Initially, we have that
∑

i wi = 1. After T rounds, the total wealth of any participanti is
given by

wi

T
∏

t=1

(

pit

pt

)yt
(

1 − pit

1 − pt

)1−yt

= wie
L−Li ≤ 1,

where the last inequality follows from wealth being conserved. Thuslnwi + L − Li ≤ 0, yielding

L ≤ Li + ln
1

wi

.

⊓⊔
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A Fractional Kelly Betting

Fractional Kelly bettingsays to invest a smaller fractionλf∗ of wealth forλ < 1. Fractional Kelly
is usually justified on an ad-hoc basis as either (1) a risk-reduction strategy, since practitioners often
view full Kelly as too volatile, or (2) a way to protect against an inaccurate beliefp, or both [17]. Here
we derive an alternate interpretation of fractional Kelly.In prediction market terms, the fractional
Kelly formula is

λ
p − pm

1 − pm

.

With some algebra, fractional Kelly can be rewritten as

p′ − pm

1 − pm

where
p′ = λp + (1 − λ)pm. (3)

In other words,λ-fractional Kelly is precisely equivalent to full Kelly with revised beliefλp +
(1 − λ)pm, or a weighted average of the agent’s original belief and themarket’s belief. In this



light, fractional Kelly is a form of confidence weighting where the agent mixes between remaining
steadfast with its own belief (λ = 1) and acceding to the crowd and taking the market price as the
true probability (λ = 0). The weighted average form has a Bayesian justification if the agent has
a Beta prior overp and has seent independent Bernoulli trials to arrive at its current belief. If the
agent envisions that the market has seent′ trials, then she will update her belief toλp + (1− λ)pm,
whereλ = t/(t + t′) [9,12]. The agent’s posterior probability given the price is a weighted average
of its prior and the price, where the weighting term capturesher perception of her own confidence,
expressed in terms of the independent observation count seen as compared to the market.

B Market prediction with fractional Kelly

When agents play fractional Kelly, the competitive equilibrium price is

pm =

∑

i λiwipi
∑

l λlwl

. (4)

Prices retain the form of a weighted average, but with weights proportional to the product of wealth
and self-assessed confidence.

C Market model

Suppose that we have a prediction market withN participants, where participanti has a starting
wealthwi with

∑

i wi = 1. Each participanti uses Kelly betting to determine the fractionf∗

i of
their wealth bet, depending on their predicted probabilitypi.

We model the market as an auctioneer matching supply and demand, taking no profit and absorbing
no loss. We adopt a competitive equilibrium concept, meaning that agents are “price takers”, or
do not consider their own effect on prices if any. Agents optimize according to the current price
and do not reason further about what the price might reveal about the other agents’ information.
An exception of sorts is the fractional Kelly setting, whereagents do consider the market price as
information and weight it along with their own.

A market is in competitive equilibrium at pricepm if all agents are optimizing and
∑

i q∗i = 0, or
every buy order and sell order are matched.

D Example: Market dynamics with stationary objective frequency

The worst-case bounds above hold even if event outcomes are chosen by a malicious adversary. In
this section, we examine how the market performs when the objective frequency of outcomes is
unknown though stationary.

The market consists of a single bet repeated over the course of T periods. Unbeknown to the agents,
each event unfolds as an independent Bernoulli trial with probability of successπ. At the beginning
of time periodt, the realization of eventEt is unknown and agents trade until equilibrium. Then the
outcome is revealed, and the agents’ holdings pay off accordingly. As time periodt + 1 begins, the
outcome ofEt+1 is uncertain. Agents bet on thet + 1 period event until equilibrium, the outcome
is revealed, payoffs are collected, and the process repeats.

In an economy of Kelly bettors, the equilibrium price is a wealth-weighted average (2). Thus, as an
agent accrues relatively more earnings than the others, itsinfluence on price increases. In the next
two subsections, we examine how this adaptive process unfolds; first, with full-Kelly agents and
second, with fractional Kelly agents. In the former case, prices react exactly as if the market were a
single agent updating a Beta distribution according to Bayes’ rule.

Market dynamics with full-Kelly agents

Figure 1.a plots the price over fifty time periods, in a marketcomposed of one hundred Kelly agents,
initial wealthwi = 1, andpi generated randomly and uniformly on(0, 1). In this simulationπ =
0.5. For comparison, the figure also shows theobserved frequency, or the number of times thatE
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Fig. 1. a) Price (black line) versus the observed frequency (gray line) of the event over fifty time periods. The
market consists of one hundred full-Kelly agents with initial wealthwi = 1. b)Wealth after fifteen time periods
versus belief for fifty Kelly agents. The event has occurred in three of the fifteen trials. The solid line is the
posterior Beta distribution consistent with the observation of three successes in fifteen independent Bernoulli
trials.

has occurred divided by the number of periods. The market price tracks the observed frequency
extremely closely. Note that price changes are due entirelyto a transfer of wealth from inaccurate
agents to accurate agents, who then wield more power in the market; individual beliefs remain fixed.

Figure 1.b illustrates the nature of this wealth transfer. The graph provides a snapshot of agents’
wealth versus their beliefpi after period 15. In this run,E has occurred in three out of the fifteen
trials. The maximum in wealth is near 3/15. The solid line in the figure is a Beta distribution with pa-
rameters3+1 and12+1, scaled only by a constant. This distribution is precisely the posterior prob-
ability of success that results from the observation of 3 successes out of 15 independent Bernoulli
trials, when the prior probability of success is uniform on (0,1). The fit is essentially perfect, and
can be proved in the limit since the Beta distribution is conjugate to the Binomial distribution under
Bayes Law.

Although individual agents are not adaptive, the market’s composite agent computes a proper
Bayesian update. Specifically, wealth is reallocated proportionally to a Beta distribution correspond-
ing to the observed number of successes and trials, and priceis approximately the expected value of
this Beta distribution.1 Moreover, this correspondence holds regardless of the number of successes
or failures, or the temporal order of their occurrence. A kind of collective Bayesianityemergesfrom
the interactions of the group.

We also find empirically that, even if not all agents are Kellybettors, among those that are, wealth
is still redistributed according to Bayes rule.

Market dynamics with fractional Kelly agents

In this section, we consider fractional Kelly agents who, aswe saw in Section 2, behave like full
Kelly agents with beliefλp + (1 − λ)pm. Figure 2.a graphs the dynamics of price in an economy
of such agents, along with the observed frequency. Over time, the price remains significantly more
volatile than the frequency, which converges towardπ = 0.5. Below, we characterize the transfer of
wealth that precipitates this added volatility; for now concentrate on the price signal itself. Inspecting
Figure 2.a, price changes still exhibit a marked dependenceon event outcomes, though at any given
period the effect of recent history appears magnified, and the past discounted, as compared with
the observed frequency. Working from this intuition, we attempt to fit the data to an appropriately
modified measure of frequency. Define thediscounted frequencyat periodn as

dn =

∑n

t=1 γn−t(1E(t))
∑n

t=1 γn−t(1E(t)) +
∑n

t=1 γn−t(1
E(t)

)
, (5)

where1E(t) is the indicator function for the event at periodt, andγ is thediscount factor. Note that
γ = 1 recovers the standard observed frequency.

1 As t grows, this expected value rapidly approaches the observedfrequency plotted in Figure 1.
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Fig. 2. a) Price (black line) versus observed frequency (gray line)over one hundred fifty time periods for one
hundred agents with Kelly fractionλ = 0.2. As the frequency converges toπ = 0.5, the price remains volatile.
b) Price (black line) versus discounted frequency (gray line), with discount factorγ = 0.96, for the same
experiment as (a).

Figure 2.b illustrates a very close correlation between discounted frequency, withγ = 0.96 (hand
tuned), and the same price curve of Figure 2.a. While standard frequency provides a provably good
model of price dynamics in an economy of full-Kelly agents, discounted frequency (5) appears a
better model for fractional Kelly agents.

E Learning the Kelly fraction

In theory, a rational agent playing against rational opponents should set their Kelly fraction toλ = 0,
since, in a rational expectations equilibrium [6], the market price is by definition at least as informa-
tive as any agent’s belief. This is the crux of the no-trade theorems [8]. Despite the theory [5], people
do agree to disagree in practice and, simply put, trade happens. Still, placing substantial weight on
the market price is often prudent. For example, in an online prediction contest called Probabili-
tySports, 99.7% of participants were outperformed by the unweighted average predictor, a typical
result.

In this light, fractional Kelly can be seen as an experts algorithm [2] with two experts: yourself
and the market. We propose dynamically updatingλ according to standard experts algorithm logic:
When you’re right, you increaseλ appropriately; when you’re wrong, you decreaseλ. This gives a
long-term procedure for updatingλ that guarantees:

– You won’t do too much worse than the market (which by definition earns 0)

– You won’t do too much worse than Kelly betting using your original priorp

For example, if you allocate an initial weight of0.5 to your predictions and0.5 to the market’s
prediction, then the regret guarantee of section 4.2 implies that at most half of all wealth is lost.

F Speculations

We’ve shown something intuitively appealing here: that self-interested agents with log wealth utility
create markets which learn to have small regret according tolog loss. There are two distinct “log”s
in this statement, and it’s appealing to consider what happens when we vary these. When agents
have some utility other than log wealth utility, can we alterthe structure of a market so that the
market dynamics make the market price have low log loss regret? And similarly if we care about
some other loss—such as squared loss, 0/1 loss, or a quantileloss, can we craft a marketplace such
that log wealth utility agents achieve small regret with respect to these other losses?

What happens in a market place without Kelly bettors? This can’t be described in general, although
one special case is relevant: when one of the bettors acts according to Kelly and the others in some
more irrational fashion. In this case, the basic Kelly guarantee implies that the Kelly bettor will come
to dominate non-Kelly bettors with equivalent or worse log loss. If non-Kelly agents have a better



log loss, the behavior can vary, possibly imposing greater regret on the marketplace if the Kelly
bettor accrues the wealth despite a worse prediction record. For this reason, it may be desirable to
make Kelly betting an explicit option in prediction markets.


