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Abstract

Kelly betting is an optimal strategy for taking advantagenfinformation edge
in a prediction market, and fractional Kelly is a common aati We show several
consequences that follow by assuming that every partitipanprediction market
uses (fractional) Kelly betting. First, the market preiiotis a wealth-weighted
average of the individual participants’ beliefs, wheresfianal Kelly bettors shift
their beliefs toward the market price as if they've seen sémaetion of observa-
tions. Second, if all fractions are one, the markgirnsat the optimal rate, the
market prediction has low log regret to the best individuatigipant, and when
an underlying true probability exists the market convergethe true objective
frequency as if updating a Beta distribution. If fractions kess than one, the mar-
ket converges to a time-discounted frequency. In the psyaes provide a new
justification for fractional Kelly betting, a strategy wigtaised in practice for ad-
hoc reasons. We propose a method for an agent to learn her mtimab Kelly
fraction.

1 Introduction

Consider a gamble on a binary event, say, that Obama will ké?012 US Presidential election,
wherex dollars risked earnsb dollars net profit if the gamble pays off. How many dollarsf your
wealth should you risk if you believe the probabilityi® The gamble is favorabledp— (1—p) > 0,

in which case betting your entire wealth will maximize your expected profit. However, that's
extraordinarily risky: a single stroke of bad luck losesrgtleing. Over the course of many such
gambles, the probability of bankruptcy approaches 1. Ontitver hand, betting a small fixed amount
avoids bankruptcy but cannot take advantage of compourngowgth.

The Kelly criteria prescribes choosing to maximize the expected compounding growth rate of
wealth, or equivalently to maximize the expected logarittfmvealth. Kelly betting is asymptoti-
cally optimal, meaning that in the limit over many gambleKedly bettor will grow wealthier than
an otherwise identical non-Kelly bettor with probability1,3,7,16,17].

Assume all agents in a market optimize according to the Kwilyciple, where is selected to clear
the market. We consider the implications for the market ab@l@and properties of the market odds
b or, equivalently, the market probability, = 1/(1+0b). We show that the market predictipp, is a
wealth-weighted average of the agents’ predictipn®ver time, the market itsel—by reallocating
wealth among participants—adapts at the optimal rate vatinded log regret to the best individual
agent. When a true objective probability exists, the matket/erges to it as if properly updating a
Beta distribution according to Bayes rule. These resliistilate that there is no “price of anarchy”
associated with well-run prediction markets.

We also consider fractional Kelly betting, a lower-riskieat of Kelly betting that’s popular in prac-
tice but with less theoretical grounding in the appendix.pMavide a new justification for fractional



Kelly based on agent confidence. In this case, the markeigi@dis a confidence-and-wealth-
weighted average that empirically converges to a timeedisted version of objective frequency.
We propose a method for agents to learn their optimal fraciiger time.

2 Kelly betting

When offeredh-to-1 odds on an event with probabilipy the Kelly-optimal amount to bet i§*w,

where
. bp—(1-p)
I = b

is the optimal fixed fraction of total wealth to commit to the gamble.

If f*is negative, Kelly says to avoid betting: expected profieigative. Iff* is positive, you have an
information edge; Kelly says to invest a fraction of your ltle@roportional to how advantageous the
bet is. In addition to maximizing the growth rate of wealtlgll betting maximizes the geometric
mean of wealth and asymptotically minimizes the mean timeséxh a given aspiration level of
wealth [17].

Suppose fair odds df/b are simultaneously offered on the opposite outcome (elgan@ willnot
win the election). Ibp— (1—p) < 0, then betting on this opposite outcome is favorable; stilistg
1/bfor b andl — p for p, the optimal fraction of wealth to bet becomies p — bp.

An equivalent way to think of a gamble with odéss as a prediction market with prigg,, =
1/(1 4+ b). The volume of bet is specified by choosing a quantitf shares where each share is
worth $1 if the outcome occurs and nothing otherwise. Thegmepresents the cost of one share: the
amount needed to pay for a chance to win back $1. In this ire&pon, the Kelly formula becomes

f* _ 1; — Pm )
— Pm
The optimal action for the agent is to tragle= f*w/p,, shares, where* > 0 is a buy order and
q* < 0is a sell order, or a bet against the outcome.

Note thatg* is the optimum of expected log utilityln((1 — p,,)g + w) + (1 — p) In(—pmq + w).
This is not a coincidence: Kelly betting is identical to nrakiing expected log utility.

3 Market prediction

In order to define the prediction market’'s performance, wstrdefine its prediction, or the equi-
librium payoff odds reached when all agents are optimizamgl supply and demand are precisely
balanced. Recall that the market’s probability implied bg bdds ob is p,, = 1/(1 + b). We will
show thatp,, is ), w;p;.

3.1 Payout balance

The first approach we’ll use is payout balance: the amountasfey at risk must be the same as the
amount payed out.

To see this, recall that* = (p; — pm) /(1 —pm) for p; > py,. Forp; < py,, Kelly betting prescribes
taking the other side of the bet, with fraction

(1=pi)) =1 =pm)  pPm—pi
1—(1—pm) Pm .

So the market equilibrium occurs at the pgipt where the payout is equal to the payin. If the event
occurs, the payin is

(1+0b) B Py — — Z ]11_ Lo
1P >Pm Pm PP >Pm Pm



Thus we want

1 PR
- Di Pm w; = pz Pm w; w,; + Z Pm — pzw“ or
Pm . 1—pm ) 1—pm Pm
1—pm Z Pi — pm Z Pm —DPi
w;, Or
Pmpi>pm 1= Pm ©:pi<Pm

Z (pi — pm)w; = Z (pm — pi)w;, or equivalently

Using), w; = 1, we get
Pm = Zpiwi-

In other words, the market clearing price is the wealth-Wigd average prediction of participants.

3.2 Log utility maximization

An alternate derivation of the market prediction utilizhe fact that Kelly betting is equivalent to
maximizing expected log utility. Let = 2:(b+ 1) be the gross profit of an agent who riskdollars,
or in prediction market language the number of shares pesth& hen expected log utility is

E[U(q)] = pIn((1 = pm)q + w) + (1 = p) In(=pmg + w).
The optimalg that maximize[U(q)] is

w .p_pm (1)

Proposition 1. In a market of agents each with log utility and initial wealth the competitive
equilibrium price is
= Zwipi (2)
A
where we assume, w; = 1, or w is normalized wealth not absolute wealth.

Proof. These prices satisfy, ¢; = 0, the condition for competitive equilibrium (supply equals
demand), by substitutiof

This result can be seen as a simplified derivation of that byiftiein [13,14,15] and is also dis-
cussed by Pennock and Wellman [11,10] and Wolfers and Zitz¢®8].

4 Learning Prediction Markets

Individual participants may have varying prediction gtie§ and individual markets may have vary-
ing odds of payoff. What happens to the wealth distributiod aence the quality of the market
prediction over time? We show next that the matkatnsoptimally for two well understood senses
of optimal.

4.1 Wealth redistributed according to Bayes Law

In an individual round, if an agent’s beliefjigs > p,,, then they be i:;’m w; and have a total wealth
afterward dependent on outcomeccording to:

1. Ifyzl,(pi—l)pf gnwi—i-wi:;” w;

2. Ify =0, (—1)5= 5’“ w; + w; = =P,




Similarly if p; < p,,, we get:

10y =1, (-1) 2= + w; = Prw;

_ 1 Pm—Pi, .. o 1=pi
2. Ify=0, (1_pm -1 blwi +wp = 7w

which is identical.
If we treat the prior probability that agentis correct asw;, Bayes’ law states that the posterior
probability of choosing ageritis
Ply=1[i)P(i) _ biwi _ piwi

P(y=1) Pm Do Piwi
which is precisely the wealth computed above for ¢he 1 outcome. The same holds true when
y = 0, and so Kelly bettors redistribute wealth according to Bajew.

Plily=1)=

4.2 Market Sequences

It is well known that Bayes’ law is the correct approach fdegrating evidence into a belief distri-
bution, which shows that Kelly betting agents optimally snamize all past information if the true
behavior of the world was drawn from the prior distributidneealth.

Often these assumptions are too strong—the world does hatbeaccording to the prior on wealth,
and it may act in a manner completely different from any onglsi expert. In that case, a standard
analysis from learning theory shows that the market plasddvaregret performing almost as well
as the best market participant.

For any particular sequence of markets we have a sequenéenarket predictions ang; € {0, 1}
of market outcomes. We measure the accuracy of a marketdiegdo log loss as
T
1
L= I(y: = 1)log — + I(y: = 0) log .
; @:=1) Dt (o 1—ps
Similarly, we measure the quality of market participant mgkpredictionp;,; as

T
1
L; = I(ys =1)log — + I(y: = 0) log .
;(t ) Dit (b ) 1—pau

So afterT rounds, the total wealth of playéis

T _
<pit>yt (1 _pit)l v
w T (2) (-=22)
i1 \ Pt L—p:
wherew; is the starting wealth. We next prove a well-known theoremldéarning in the present
context (see for example [4]).

Theorem 1. For all sequences of participant predictiopg and all sequences of revealed outcomes
Yts

1
L<minL;+In—.
[ Ww;

This theorem is extraordinarily general, as it appliesaliomarket participants andll outcome
sequences, even when these are chosen adversariallyes gtat even in this worst case situation,
the market performs onlyn 1/w; worse than the best market participant

Proof. Initially, we have that) . w; = 1. After T' rounds, the total wealth of any participanis

given by
T Yt 1—ys
H Dit 1 —pit L_L.
; — _ = ; <1
v ( ) ( I—pe ) e -

Dt
t=1
where the last inequality follows from wealth being consetvThudn w; + L — L; < 0, yielding

1

wj
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A Fractional Kelly Betting

Fractional Kelly bettingsays to invest a smaller fractiory* of wealth for\ < 1. Fractional Kelly

is usually justified on an ad-hoc basis as either (1) a riskicgon strategy, since practitioners often
view full Kelly as too volatile, or (2) a way to protect agatias inaccurate belief, or both [17]. Here
we derive an alternate interpretation of fractional Kellyprediction market terms, the fractional
Kelly formula is

)\p — DPm )
1- Pm
With some algebra, fractional Kelly can be rewritten as
p/ — Pm
1- Pm
where
P =2+ (1= N)pm. ®3)
In other words,\-fractional Kelly is precisely equivalent to full Kelly witrevised belief\p +
(I — N)pm, Or a weighted average of the agent’s original belief andntizeket’s belief. In this



light, fractional Kelly is a form of confidence weighting wigethe agent mixes between remaining
steadfast with its own belief\(= 1) and acceding to the crowd and taking the market price as the
true probability f = 0). The weighted average form has a Bayesian justificatiohefagent has

a Beta prior ovep and has seehindependent Bernoulli trials to arrive at its current beliethe
agent envisions that the market has séenals, then she will update her belief A + (1 — \)pin,
wherel = t/(t + ') [9,12]. The agent’s posterior probability given the prisaiweighted average

of its prior and the price, where the weighting term captinesperception of her own confidence,
expressed in terms of the independent observation counteseeompared to the market.

B Market prediction with fractional Kelly

When agents play fractional Kelly, the competitive equilin price is

; NiWiD;

pm = ZANL @)
2w

Prices retain the form of a weighted average, but with wesightportional to the product of wealth

and self-assessed confidence.

C Market model

Suppose that we have a prediction market withparticipants, where participanthas a starting
wealthw; with >~ w; = 1. Each participant uses Kelly betting to determine the fractigji of
their wealth bet, depending on their predicted probabyjljty

We model the market as an auctioneer matching supply andragn@king no profit and absorbing
no loss. We adopt a competitive equilibrium concept, meatiat agents are “price takers”, or
do not consider their own effect on prices if any. Agents mjtée according to the current price
and do not reason further about what the price might revealiathe other agents’ information.
An exception of sorts is the fractional Kelly setting, whagents do consider the market price as
information and weight it along with their own.

A market is in competitive equilibrium at prigg,, if all agents are optimizing ani’, ¢; = 0, or
every buy order and sell order are matched.

D Example: Market dynamics with stationary objective frequency

The worst-case bounds above hold even if event outcomedaseie by a malicious adversary. In
this section, we examine how the market performs when thectils¢ frequency of outcomes is
unknown though stationary.

The market consists of a single bet repeated over the cofiiS@eriods. Unbeknown to the agents,
each event unfolds as an independent Bernoulli trial widbgbility of success. At the beginning

of time periodt, the realization of evenf; is unknown and agents trade until equilibrium. Then the
outcome is revealed, and the agents’ holdings pay off atoglsd As time period + 1 begins, the
outcome ofE; 1, is uncertain. Agents bet on thie- 1 period event until equilibrium, the outcome
is revealed, payoffs are collected, and the process repeats

In an economy of Kelly bettors, the equilibrium price is a Weaveighted average (2). Thus, as an
agent accrues relatively more earnings than the otheiigflitence on price increases. In the next
two subsections, we examine how this adaptive processdsféitst, with full-Kelly agents and
second, with fractional Kelly agents. In the former cas&gw react exactly as if the market were a
single agent updating a Beta distribution according to Bagde.

Market dynamics with full-Kelly agents

Figure 1.a plots the price over fifty time periods, in a mad@hposed of one hundred Kelly agents,
initial wealthw; = 1, andp; generated randomly and uniformly @, 1). In this simulationr =
0.5. For comparison, the figure also shows tiserved frequencyr the number of times thdt
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Fig. 1. a) Price (black line) versus the observed frequency (gre) lof the event over fifty time periods. The
market consists of one hundred full-Kelly agents with alitvealthw; = 1. b)Wealth after fifteen time periods
versus belief for fifty Kelly agents. The event has occurrethiree of the fifteen trials. The solid line is the
posterior Beta distribution consistent with the obsepratf three successes in fifteen independent Bernoulli
trials.

has occurred divided by the number of periods. The markeegracks the observed frequency
extremely closely. Note that price changes are due entioedytransfer of wealth from inaccurate
agents to accurate agents, who then wield more power in thieetpandividual beliefs remain fixed.

Figure 1.b illustrates the nature of this wealth transfére §raph provides a snapshot of agents’
wealth versus their belief; after period 15. In this runk has occurred in three out of the fifteen
trials. The maximum in wealth is near 3/15. The solid linehie figure is a Beta distribution with pa-
rameterg + 1 and12+1, scaled only by a constant. This distribution is preciské/posterior prob-
ability of success that results from the observation of Iesses out of 15 independent Bernoulli
trials, when the prior probability of success is uniform @rnl]. The fit is essentially perfect, and
can be proved in the limit since the Beta distribution is cgajte to the Binomial distribution under
Bayes Law.

Although individual agents are not adaptive, the marketimmposite agent computes a proper
Bayesian update. Specifically, wealth is reallocated prtogally to a Beta distribution correspond-
ing to the observed number of successes and trials, andipap@roximately the expected value of
this Beta distributiort. Moreover, this correspondence holds regardless of the auoflsuccesses
or failures, or the temporal order of their occurrence. Adkirf collective Bayesianitgmerge$rom
the interactions of the group.

We also find empirically that, even if not all agents are Kélgttors, among those that are, wealth
is still redistributed according to Bayes rule.

Market dynamics with fractional Kelly agents

In this section, we consider fractional Kelly agents whowassaw in Section 2, behave like full
Kelly agents with belief\p + (1 — \)p,,. Figure 2.a graphs the dynamics of price in an economy
of such agents, along with the observed frequency. Over, tineeprice remains significantly more
volatile than the frequency, which converges towargd 0.5. Below, we characterize the transfer of
wealth that precipitates this added volatility; for now centrate on the price signal itself. Inspecting
Figure 2.a, price changes still exhibit a marked dependen@vent outcomes, though at any given
period the effect of recent history appears magnified, ardptist discounted, as compared with
the observed frequency. Working from this intuition, weeatpt to fit the data to an appropriately
modified measure of frequency. Define thiscounted frequenat periodn as

_ YY" (ew)
21 V" (Lew) + i v ()

wherel ;) is the indicator function for the event at perigcandy is thediscount factor Note that
~ = 1 recovers the standard observed frequency.

d, )

1 As ¢ grows, this expected value rapidly approaches the obsémgdency plotted in Figure 1.
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Fig. 2. a) Price (black line) versus observed frequency (gray lovey one hundred fifty time periods for one
hundred agents with Kelly fractioh = 0.2. As the frequency converges4o= 0.5, the price remains volatile.
b) Price (black line) versus discounted frequency (grag)linvith discount factory = 0.96, for the same
experiment as (a).

Figure 2.b illustrates a very close correlation betweenaliated frequency, with = 0.96 (hand
tuned), and the same price curve of Figure 2.a. While stainfdequency provides a provably good
model of price dynamics in an economy of full-Kelly agentscdunted frequency (5) appears a
better model for fractional Kelly agents.

E Learning the Kelly fraction

In theory, a rational agent playing against rational opptsishould set their Kelly fraction tb = 0,
since, in a rational expectations equilibrium [6], the nedirice is by definition at least as informa-
tive as any agent’s belief. This is the crux of the no-tra@®tkms [8]. Despite the theory [5], people
do agree to disagree in practice and, simply put, trade mep&ill, placing substantial weight on
the market price is often prudent. For example, in an onliregligtion contest called Probabili-
tySports, 99.7% of participants were outperformed by theeaighted average predictor, a typical
result.

In this light, fractional Kelly can be seen as an experts wtlgm [2] with two experts: yourself
and the market. We propose dynamically updatiraccording to standard experts algorithm logic:
When you're right, you increasgappropriately; when you're wrong, you decreasd his gives a
long-term procedure for updatingthat guarantees:

— You won't do too much worse than the market (which by definigarns 0)
— You won’t do too much worse than Kelly betting using your amag priorp

For example, if you allocate an initial weight 6f5 to your predictions an®.5 to the market's
prediction, then the regret guarantee of section 4.2 impliat at most half of all wealth is lost.

F Speculations

We've shown something intuitively appealing here: that-sekrested agents with log wealth utility
create markets which learn to have small regret accorditmptpss. There are two distinct “log”s
in this statement, and it's appealing to consider what happehen we vary these. When agents
have some utility other than log wealth utility, can we alfee structure of a market so that the
market dynamics make the market price have low log loss tedxed similarly if we care about
some other loss—such as squared loss, 0/1 loss, or a quassije&can we craft a marketplace such
that log wealth utility agents achieve small regret witlpes to these other losses?

What happens in a market place without Kelly bettors? Thistdee described in general, although
one special case is relevant: when one of the bettors aatsdiieg to Kelly and the others in some
more irrational fashion. In this case, the basic Kelly gnéza implies that the Kelly bettor will come

to dominate non-Kelly bettors with equivalent or worse logd. If non-Kelly agents have a better



log loss, the behavior can vary, possibly imposing greagrat on the marketplace if the Kelly
bettor accrues the wealth despite a worse prediction re€ordthis reason, it may be desirable to
make Kelly betting an explicit option in prediction markets



