
AUTOMAN: Integrating Human and Silicon
Computation

Daniel W. Barowy
University of Massachusetts, Amherst

dbarowy@cs.umass.edu

Emery D. Berger
University of Massachusetts, Amherst

emery@cs.umass.edu

Andrew McGregor
University of Massachusetts, Amherst

mcgregor@cs.umass.edu

Abstract

While the computational power of modern computer systems has in-
creased dramatically, many tasks that humans perform easily remain dif-
ficult or impossible for computers. Crowdsourcing provides an enticing op-
portunity to utilize humans as a computational resource for solving these
kinds of problems. However, harnessing this power at scale is difficult. We
propose a shift to what we call crowdprogramming, an approach that sim-
plifies the use of human labor, thus enabling large-scale crowdsourcing
applications. We discuss AUTOMAN, a system we are building to explore
this idea.

1 Introduction

Humans possess powerful linguistic, visual, and spatial processing capabilities. These
skills make them far better than computers at performing tasks like vision, motion plan-
ning, and natural language understanding. These tasks fall into a group sometimes re-
ferred to as “AI-complete”, and many researchers expect them to be beyond the reach of
digital computers for the foreseeable future. Crowdsourcing thus seems like a promising
approach to solving these problems.

However, efficient scaling of human resources remains a challenge:

• Non-uniform abstraction. Existing crowdsourcing systems, particularly Mechan-
ical Turk, address task management in a simplistic manner. This makes incor-
porating human labor a challenging task for programmers, who must grapple
with problems such as task scheduling, network I/O, budget allocation, and error-
handling for every new program.

• Unpredictable quality. Human-based computations always need to be checked:
worker skills and accuracy vary widely, and they have a financial incentive to min-
imize their effort. Manual checking does not scale, and voting is inadequate, since
workers may agree by random chance.

• Dynamic work environment. The time that humans take to perform computa-
tional tasks is unpredictable, and has high latency. Hiring more workers can re-
duce latency by increasing the odds of finding faster workers, but this incurs an
economic cost.

1

2 Crowdprogramming

Inspired by the probabilistic human-assisted Turing machine model, crowdprogramming
models a human task as a function with some probability of correctness [1]. This abstrac-
tion allows programmers to treat human tasks as ordinary function calls in a traditional
programming language, freeing them to focus on application logic. Critical tradeoffs be-
tween data quality, time, and cost are delegated to the crowdprogramming layer. Human
computations may then be freely intermixed with standard programming constructs to
build arbitrarily complex applications.

Such a system requires the following facilities:

• Automatic task management. In order to provide a clean abstraction, a crowdpro-
gramming system must not only handle basic processing like the posting of tasks
and the collection of answers, but also validation and the rescheduling of failed
tasks.

• Quality controls. The chief concern of a crowdprogramming system should be
accurate results, running the computation until the programmer’s desired confi-
dence level is achieved (e.g., α = 0.05).

• Performance optimization. Human computation suffers from high latency, which
can be addressed by increasing parallelism. However, increased throughput must
be balanced against accuracy and budgetary constraints.

We are developing a prototype crowdprogramming system called AUTOMAN to explore
this idea. AUTOMAN is implemented as as an embedded domain-specific language (Fig-
ure 1) in Scala, an increasingly popular language built on the Java Virtual Machine [2].
Scala provides native interoperability with Java, allowing the programmer to take advan-
tage of a vast array of existing software.

AUTOMAN currently targets Amazon’s Mechanical Turk crowdsourcing platform, how-
ever, the details of any particular backend are abstracted, allowing us to plug-in new plat-
forms as needed. An in-depth discussion of the system is available in our tech report [3].

2.1 Automatic Task Management

AUTOMAN expects crowdsourced functions to return with a nonzero probability of in-
correctness. The programmer’s chosen quality control strategy informs the AUTOMAN
runtime’s behavior. The role of the runtime is to bound error and re-run calls (Figure 1)
until either the error is minimized or the budget is in danger of being exceeded.

2.2 Quality control

In AUTOMAN, programmers construct questions in a canonical form, which allows the sys-
tem to decompose compound tasks and apply its validation strategies, based on question
type, automatically. Users may always override the default validation strategy at compile
time in the event that more sophisticated quality control is required.

2.2.1 Types of error

What is a reasonable default strategy given that, as system designers, we know little about
the actual task that a programmer may wish to run? Consider the following classification
of errors:

1. people who unintentionally answer incorrectly
2. people who intentionally answer incorrectly (i.e., malicious answerers)
3. people who answer randomly

One must also consider that workers are paid for their answers.

2

import edu.umass.cs.automan.core._
import edu.umass.cs.automan.MTurk._

object WhichOneNotBelongSimple {
def main(args: Array[String]) {

// AutoMan configuration for MTurk:
val config = MTurkConfig { c =>

c.access_key_id = "XXXX"
c.secret_access_key = "XXXX"

}

// Set up AutoMan parameters.
val a = Automan { automan =>

automan.budget = 8.00
automan.config = config

}

// Define a human function.
val WhichOne = a.Task[String] { t =>

t.confidence = 0.95
t.title = "Which one doesn ’t belong?"
t.description = t.title
t.question = a.MultipleChoiceQuestion(

question_text = t.title ,
selection_texts =

Map(’oscar -> "Oscar the Grouch",
’kermit -> "Kermit",
’spongebob -> "Spongebob",
’cookie -> "Cookie Monster",
’count -> "The Count")

)
}

// Call the human -based function.
val fd = WhichOne ()

// Start execution and print result.
a.run()
println(fd.value)

}
}

Which%one%of%these%doesn’t%belong?%
[95%%conf.]%

AUTOMAN:%spawns%3%tasks%@%$0.06;%30s%work%%

t1# t2# t3#

AUTOMAN:%inconclusive;%spawns%3%more%

1m%50s%

2m%30s%

2m%50s%

t4# t5# t6#

7m%

18m%50s%

51m%AUTOMAN:%task%6%Jmed%out;%
spawn%t7%@%$0.12;%60s%work%
%

t7#

1h%9m%50s;%
cost%=%$0.36%

AUTOMAN:%5%out%of%6%
%�%95%%confidence;%
return%%%

Figure 1: A complete AUTOMAN program and sample program trace.

Compared to random-answers, malicious answerers are not the most pressing threat. Sub-
mitting wrong answers on purpose can only be for a single reason: to intentionally thwart a
computation, because, on an individual economic basis, this strategy is irrational. The same
amount of work needs to be done to answer intentionally incorrectly as to answer correctly,
but with little possibility for financial gain.

If “easy money” is a worker’s desired goal, there exists a better strategy: choosing an
answer at random, which is easily automated. People who make mistakes also need to
be guarded against, however they are largely indistinguishable from random-answerers.
Thus the most important threat is the adversary who attempts to do the least amount of
work for the largest amount of gain. Our task is to distinguish random answers from non-
random answers.

There is an additional kind of error here, and it’s one that we think crowdsourcing is ill-
suited to combat: systemic bias. If a particular incorrect belief is widely held by a popula-
tion, sampling that population will tend to reveal the bias, and increasing the sample size
will only tend to confirm that bias. Crowdsourcing cannot fundamentally reveal “truth”,
rather, it reveals what we call “truthiness.”

2.2.2 Default strategy

The default validation strategy employed by our system is based on preference aggregation.
Tasks are duplicated and an answer is chosen mechanically. The number of replicas is
determined with the following procedure.

3

Given a question with k valid answers, we model the output of n workers as a multi-
nomial distribution where each trial results in one of k possible outcomes and each out-
come i has an (unknown) associated probability pi. By assumption we wish to identify
i? = argmax

i
pi. Our system spawns worker requests until the frequency distribution of

the various outcomes is sufficient to determine i? with probability at least 1 − α. If pi? is
close to 1 we ensure that only a small number of workers are paid. However, if pi? is close
to 1/k we must be careful that the process terminates before spending too much on paying
the workers; this limit is presently a configurable paramter.

2.2.3 Combining strategies

Automatic low-level task scheduling allows one to combine strategies in a modular way.
For instance, sometimes computational validation of an output is as difficult as producing
the output in the first place, thus a programmer may naturally wish to use the crowd to
perform the validation. This strategy can be combined with preference aggregation by
asking the second set of workers to rate the submissions to the original question. The
second set of answers provides data which the runtime can use to automatically select an
answer out of the first set.

2.3 Performance

Execution plan abstraction breaks the implicit sequentiality of a program by examining its
execution graph, giving control of scheduling a function to the runtime [4]. Only tasks
with a functional dependency on other tasks need wait; all other tasks can be executed im-
mediately, and in parallel. Abstracting the execution plan allows for automatic, dynamic
error-checking and recovery, as each human “thread” is subjected to validation and pos-
sible additional re-computation on an individual basis. Since tasks are parallelized, the
runtime is free to perform error recovery while other tasks proceed normally.

3 Related work

TurKit is a scripting system designed to make it easier to manage Mechanical Turk tasks [5].
TurKit adds checkpointing to avoid re-submitting Mechanical Turk tasks if a script fails.
TurKit does not fundamentally address quality control, which is the key obstacle to both
scalability and efficiently handling the details of human interaction.

CrowdForge is a web tool that wraps a MapReduce-like abstraction on Mechanical Turk
tasks [6, 7]. Programmers decompose tasks into partition tasks, map tasks, and reduce tasks.
CrowdForge automatically handles distributing tasks to multiple users and collecting the
results. Data quality concerns are left to the programmer, and while the MapReduce con-
cept is useful for making parallelism explicit, it is cumbersome to use.

CrowdFlower is a closed-source, commercial web service for crowdsourcing that targets
commercial crowdsourcing platforms [8]. As with the approach outlined by Ipeirotis et al.,
CrowdFlower’s approach is to identify likely erroneous workers [9]. Rather than assum-
ing that one can extrapolate future work quality based on a worker’s past performance,
AUTOMAN addresses work quality directly and with rigorous statistical assurances.

4 Future work

The AUTOMAN prototype supports multiple-choice questions where exactly one of the an-
swers is correct, or when zero or more may be correct. We plan to extend the system to
support rankings, free-form questions, and surveys. We also plan to extend the system’s
support for memoizing intermediate results, ala TurKit, as well as a web service to allow
AUTOMAN to monitor a running job. Finally, we plan to enhance Java support for pro-
grammers who are more comfortable in a Java-only environment.

4

References
[1] Dafna Shahaf and Eyal Amir. Towards a Theory of AI Completeness. In Commonsense 2007: 8th

International Symposium on Logical Formalizations of Commonsense Reasoning. Association for the
Advancement of Artificial Intelligence, 2007.

[2] Martin Odersky and Matthias Zenger. Scalable Component Abstractions. In Proceedings of the
20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and ap-
plications, OOPSLA ’05, pages 41–57, New York, NY, USA, 2005. ACM.

[3] Daniel Barowy, Emery Berger, and Andrew McGregor. AutoMan: A Platform for Integrating
Human-Based and Digital Computation. Technical Report UM-CS-2011-044, University of Mas-
sachusetts, Amherst, 2012. Also available as http://www.cs.umass.edu/publication/docs/
2011/UM-CS-2011-044.pdf.

[4] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert Brad-
shaw, and Nathan Weizenbaum. FlumeJava: Easy, Efficient Data-Parallel Pipelines. In PLDI,
pages 363–375, 2010.

[5] Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. TurKit: Human Computation
Algorithms on Mechanical Turk. In UIST, pages 57–66, 2010.

[6] Aniket Kittur, Boris Smus, and Robert E. Kraut. CrowdForge: Crowdsourcing Complex Work.
Technical Report CMU-HCII-11-100, Human-Computer Interaction Institute, School of Com-
puter Science, Carnegie Mellon University, February 2011.

[7] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
In OSDI, pages 137–150, 2004.

[8] Dave Oleson, Vaughn Hester, Alex Sorokin, Greg Laughlin, John Le, and Lukas Biewald. Pro-
grammatic Gold: Targeted and Scalable Quality Assurance in Crowdsourcing. In HCOMP ’11:
Proceedings of the Third AAAI Human Computation Workshop. Association for the Advancement of
Artificial Intelligence, 2011.

[9] Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Quality management on Amazon Me-
chanical Turk. In Proceedings of the ACM SIGKDD Workshop on Human Computation, HCOMP ’10,
pages 64–67, New York, NY, USA, 2010. ACM.

5

