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Abstract

It is now commonplace to see the Web as a platform that can harness the collec-
tive abilities of large numbers of people to accomplish tasks with unprecedented
speed, accuracy and scale [10]. To push this idea to its limit, DARPA launched its
Network Challenge, which aimed to “explore the roles the Internet and social net-
working play in the timely communication, wide-area team-building, and urgent
mobilization required to solve broad-scope, time-critical problems” [5]. The chal-
lenge required teams to provide coordinates of ten red weather balloons placed at
different locations in the continental United States. This large-scale mobilization
required the ability to spread information about the tasks widely and quickly, and
to incentivize individuals to act. We report on the winning team’s strategy, which
utilized a novel recursive incentive mechanism to find all balloons in under nine
hours. We analyze the theoretical properties of the mechanism, and present data
about its performance in the challenge.1

1 Time-Critical Social Mobilization

Crowdsourcing is to harness the collective abilities of large numbers of people to accomplish tasks
with unprecedented speed, accuracy and scale [11, 23, 4]. A particularly challenging class of crowd-
sourcing problems require not only the recruitment of a very large number of participants, but also
extremely fast execution. Examples include search-and-rescue operations in the aftermath of natu-
ral disasters, hunting down wanted outlaws on the run, reacting to health threats that need instant
attention, and rallying supporters to vote in a political campaign. In time-critical social mobiliza-
tion problems, it is often not practical, or even impossible, to create sufficient mobilization through
mass media, due to the extremely high cost of reaching everybody, or due to severe infrastructure
damage[14].

1A full version of this paper can by found at http://arxiv.org/abs/1008.3172
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Another common characteristic of these social mobilization problems is the presence of some sort
of search process. For example, search may be conducted by members of the mobilized community
for survivors after a natural disaster. There is growing literature on search in social networks. It has
long been established that social networks are very effective at finding target individuals through
short paths [20], and various explanations of this phenomenon have been given [13, 25, 1, 22].

However, it is important to recognize that the challenge of a successful search in social mobilization
depends on the incentive mechanism. Indeed, in an empirical study, Dodds et al conclude that “al-
though global social networks are, in principle, searchable, actual success depends sensitively on
individual incentives” [8]. It has also been observed that the the success of crowdsourcing mech-
anisms, in general, can vary depending on the details of the financial incentive scheme in place
[19].

Recognizing the difficulty of time-critical social mobilization, the Defense Advanced Research
Projects Agency (DARPA) announced the DARPA Network Challenge. The announcement, which
coincided with the 40th anniversary of the Internet. Through this challenge, DARPA aimed to “ex-
plore the roles the Internet and social networking play in the timely communication, wide-area
team-building, and urgent mobilization required to solve broad-scope, time-critical problems” [5].
The challenge is to provide coordinates of ten red weather balloons placed at different locations in
the continental United States. According to DARPA, “a senior analyst at the National Geospatial
Intelligence Agency characterized the problem as impossible” by conventional intelligence gathering
methods [7].

2 The Recursive Incentive Mechanism

According to the DARPA report, between 50 and 100 serious teams participated in the DARPA
Network Challenge, from a total of 4, 000 teams [7]. Moreover, approximately 350, 000 people
participated in the DARPA Network Challenge in various ways, ranging from searching for balloons,
to simply being aware of the challenge and willing to report a balloon if spotted.

The MIT Team, which won the challenge [6], completed the challenge in 8 hours and 52 minutes.
In approximately 36 hours prior to the beginning of the challenge, the MIT Team was able to recruit
almost 4, 400 individuals through a recursive incentive mechanism.

The MIT Team’s approach was based on the idea that achieving large-scale mobilization towards
a task requires (a) diffusion of information about the tasks through social networks; and (b) provi-
sion of incentives for individuals to act, both towards the task and towards the recruitment of other
individuals. We consider the MIT Team’s approach to the DARPA Network Challenge to be an
instance of a more general class of mechanisms for distributed task execution. We now define this
class of mechanisms. But we first need to define the setting in which such mechanisms operate. We
define a diffusion-based task environment which consists of the following: N = {α1, . . . , αn} is
a set of agents; E ⊆ N × N is a set of edges characterizing social relationships between agents;
Ψ = {ψ1, . . . , ψm} is a set of tasks; P : N ×Ψ → [0, 1] returns the success probability of a given
agent in executing a given task; B ∈ R be the budget that can be spent by the mechanism.

In a diffusion-based task environment, agents are not aware of the tasks a priori. Instead, they
become aware of tasks as a result of either (1) being directly informed by the mechanism through
advertising; or (2) being informed through recruitment by an acquaintance agent [26].

Another characteristic of diffusion-based task environments is that, when a task is completed, the
mechanism is able to identify not only the agent who executed it, but also the information pathway
that led to that agent learning about the task. The pathway leading to the successful completion of
task ψi is captured by the sequence S(ψi) = 〈a1, . . . , ar〉 of unique agents, where ar is the agent
who completed the task, ar was informed of the task by ar−1 and so on up to agent a1 who was
initially informed of the task by the mechanism. By slightly overloading notation, let |S(ψi)| denote
the length of the sequence (i.e. the number of agents in the chain), and let αj ∈ S(ψi) denote that
agent αj appears in sequence S(ψi).

We can now define a class of mechanisms that operate in the above settings. A diffusion-based
task execution mechanism specifies the following: I ⊆ N is a set of initial nodes to target (e.g.
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via advertising); ρi is the payment made to agent αi; such that the following constraint is satisfied:
c|I|+

∑
αi∈N ρi ≤ B.

In words, the mechanism makes two decisions. First, it decides which nodes to target initially via
advertising. Second, it decides on the payment (if any) to be made each agent. The mechanism must
do this within its budget B.

In the DARPA Network Challenge, each ψi represents finding a balloon, and v(ψi) = 4, 000 for
all ψi ∈ Ψ. Moreover, since the ten tasks are all identical (namely finding a balloon), ∀αi ∈
N, ∀ψk, ψl ∈ Ψ we have P (αi, ψk) = P (αi, ψl). That is, the success probability of a particular
agent is the same for all balloons.

We are now ready to define the MIT Team mechanism, referred to as a recursive incentive mecha-
nism. Given I initial targets, and assuming v(ψi) = B/|Ψ|, divide the budget B such that each task
ψi ∈ Ψ has budget Bi = B/|Ψ|. If agent j ∈ N appears in position k in sequence S(ψi), then
j receives the following payment: v(ψi)

2(|S(ψi)|−k+1) . Hence, the total payment received by agent j is

the sum of payments for all sequences in which j appears: ρj =
∑
ψi|j∈S(ψi)

v(ψi)

2(|S(ψi)|−k+1) . The
surplus is therefore: S = B −

∑
αj∈N ρj . See the figure in our full paper[21] for illustrations of

this mechanism.

As demonstrated in our full paper[21], the MIT mechanism is never in deficit. Under reasonable
assumptions, we also prove that the best strategy for a participant under this incentive structure is to
recruit all one’s peers. However, this mechanism is also limited: for instance, it is not resistant to
false name attack.

3 Empirical Data

We explore how our mechanism’s performance compares with previous studies on search and re-
cruitment in social networks based on the diffusion data we collected during the Network Challenge.

One measure of success is the size of the cascades, both in terms of number of nodes, as well as
depth. Results vary in existing literature. In a study of the spread of online newsletter subscriptions,
in which individuals were rewarded for recommending the newsletter to their friends, the 7, 188
cascades varied in size between 2 and 146 nodes, with a maximum depth of 8 steps [12], over a time
span of three months.2 In our data, if we ignore the MIT root node, there are 845 trees recruited
within only three days. The largest tree contained 602 nodes, and the deepest tree was 14 levels
deep. We found that tree depth follows a power law. Furthermore, Tree size also shows a power-
law distribution with exponent −1.96, as predicted by models of information avalanches on sparse
networks [24]. The plots are presented in Figure 1.
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Figure 1: (a) Distribution of tree depth on a log-log scale with a power law fit. (b) Distribution of tree size on
a log-log scale with a power law fit. (c) Distribution of the branching factor on a log-log scale with a power law
fit.

Previous empirical studies reported significant attrition rates (aka discard rate), which measures
the percentage of nodes that terminate the diffusion process. For example, in a study of email-based
global search for 18 target persons, attrition rate varied between 60−68% in 17 out of the 18 searches
performed [8]. It has been argued that the “lack of interest or incentive, not difficulty, was the main
reason for chain termination” [8]. In another study of the diffusion of online recommendations, an
attrition rate of 91.21% was repoted despite providing incentives to participants by offering them a

2Esteban Moro, personal communication.
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chance in a lottery [12]. In the DARPA Network Challenge, if we ignore isolated single nodes, our
mechanism achieves a significantly lower attrition rate of 56%.

Moreover, in the newsletter subscription experiment [12], the dynamics of diffusion were slow,
which was attributed to a heterogeneous, non-Poissonian distribution of individuals’ response time.
Interestingly, we observe an exponential distribution of inter-signup time[21]. This contrasts with
the empirically observed power-law distribution of inter-response time in human activity [2, 17] and
information cascades [12]. Ongoing initiatives that utilize our approach could determine whether
this deviation is due to the incentive mechanism.

4 Conclusion

From an observational perspective, previous studies have shown that the success of information
cascades on social networks is affected by various factors[26, 3, 12, 16, 8, 24, 16]. However, from
the perspective of an incentive designer seeking large-scale social mobilization, the problem boils
down to two questions: (i) which individuals to target directly? (ii) what incentives to provide in
order to encourage participation? While others have addressed the first question (i.e. [9]), here
we addressed the question of incentives, which has not received much attention in the literature, as
pointed out by Dodds et al [8], until the DARPA Network Challenge. In particular, our mechanism
simultaneously provides incentives for participation and for recruiting more individuals to the cause.
This mechanism is already being used in different contexts, such as social mobilization to fight world
hunger, in games of cooperation and prediction, and for marketing campaigns.

We believe that it is not a coincidence that the winning strategy in the DARPA Network Challenge
was one that exploited ideas from both incentive design [18] and computational social science [15].
After all, people are self-interested individuals, but also embedded within social networks. It is
hoped that this paper will stimulate theoretical and empirical efforts to devise incentive mechanisms
for a variety of challenging, time-critical social mobilization problems.
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