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Abstract

We present a new way for modeling 1)social influenceand 2) the well-observed
property of social influence – the influence strength betweenindividuals changes
over time (e.g., friendships break and reform). We show thatour unsupervised
generative switching Bayesian approach can simultaneously captures the system
dynamics as the outcome of both (i) the influence between individuals (each mod-
eled as an HMM), and (ii) the changes of influence itself usingonly individual
observations. We describe here a variational Expectation-Maximization (EM) al-
gorithm for inference. In our experiments, we illustrate applications with synthetic
and real data of detecting structural change, predicting turn taking by analyzing
a real group discussion behavior dataset and understandingflu influence patterns
between US states. Results demonstrate that our approach isa strong alternative
for modeling complex interacting social systems.1

1 Introduction

Our proposed model tackles the problem of analyzing and understandingwho influences whomin a
social system, such as a group discussion process, which hasbeen an interesting question for social
scientists for the last six decades [1]. Influence is also interesting in the context of leadership where
the influence between one another has been recognized as a significant factor of group performance
[2]. However, it remains a difficult question to define and model the concept ofinfluencein a formal
mathematical way.

In this paper, we handle this problem by modeling each agent in a social system as a Hidden Markov
Chain with a finite set of states, and all chains interact witheach other according to a family of influ-
ence configurations, each of which describes a different interaction pattern among nodes. Influence
between two agents is modeled as how the current state of one agent can effect the future states of
the other agents.

In the prevailing studies on social computing, quantitative efforts have focused on thestaticpicture
of the influence [3] [4], namely who is influencing whom in a social system when longitudinal data
on human interactions is aggregated in a snapshot. However,there is extensive evidence leading
us to think that influence is indeed a dynamical process[5][6]. This can also be seen from many
real-world experiences: Friendship is not static, and the person who currently possesses the most

1A full version of this paper can be found athttp://arxiv.org/abs/1009.0240.
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influence over you may be different after some time; In a tedious negotiation with many parties
involved, your most active opponent may change due to topic shift and strategy shift over time...
Therefore, we believe that, in a social system such as a groupdiscussion session, the influence
between subjects fluctuates as well, and a better model should take the changes of influence itself
into consideration.

Our approach is in essence a switching version of influence model [7], a special type of Bayesian
network. We are interested in the challenge of inferring influence and learning parameters in a
social system based solely on individual observations overtime, i.e., without actually knowing the
individual interaction patterns. We define influence between two nodes as the conditional probability
between the internal states of these two nodes in consecutive time frames. We approach the problem
of dynamical influence by introducing a family of different influence configurations, each of which
captures a different interaction pattern among nodes. A latent tracert is included also to represent
the index of the current active influence configuration at time t. rt gradually switches between
different influence configurations, and itself is treated asa stochastic process as well. Therefore,
our model not only captures the dynamics of individual behaviors, but also the underlying latent
variables tracing changes in influence. It should be noted that in our approach system dynamics and
changing influence are learned simultaneously in a unified framework, and the learning algorithm is
unsupervised.

We are fully aware of the class of time-varying models: from EGRM [16] to TESLA [17], to name
two. We model the dynamics of every node and edge in a network instead of feature functions as
in EGRM. Our work is also significantly different from TESLA:We consider changing influence,
which are continuous real values, as the topological dynamics. As shown in our turn-taking experi-
ment, our generative model is more suitable in capturing theinteraction of nodes and the dynamics
of the interaction strength simultaneously.

2 Our Model

Our approach, the Dynamical Influence Process, is a switching extension to the existing influence
model [9]. It is composed ofC interacting chains. In this model, similar to an HMM, each chain
c ∈ {1, . . . , C} takes one of a finite number of latent states at any discrete timet: h(c)

t ∈ {1, . . . , S}.
Corresponding to each latent stateh

(c)
t , we observeO(c)

t which follows a conditional probability dis-
tribution Prob(O(c)

t |h
(c)
t ), usually known as the emission probability in HMM literature. In practice,

it can either be multinomial for discrete observations or Gaussian mixture for continuous observa-
tions.

We proceed to describe the cross-chain interactions of thissystem.Mi,j denotes theith row and
jth column of matrixM in the following discussion. In this model, we haveJ different interaction
configurations described by matricesR1, ...,RJ and only one configurationrt ∈ {1, . . . , J} is
active at timet. J is a hyper-parameter set by the user, and we cover the detail of selecting the
values of hyper-parameters in the full version[19]. The model changes its interaction configurations
{rt}t=1,2,... slowly with respect to the sampling period according to the following Markov prices:

rt+1|rt ∼ multi(Vrt,1, · · · ,Vrt,J), (1)

whereV is constrained by another hyper-parameterpV , pV > 0. A largepV will ensure that our
model switch slowly to other influence configurations and tend to remain in the current configura-
tion:

(Vrt,1, . . . ,Vrt,J) ∼ Dirichlet(100, 100, . . . , 10p
V

, . . . , 100). (2)
↑

1,
↑

2, . . . ,
↑
rt, . . . ,

↑

J

Given that the interaction configurationrt is in effect, the latent state of chainc in this system at
time t + 1 is determined by another random chainq(c)t ∈ {1, . . . , C} according to a multinomial
distribution described by the configuration matrixRrt . This is similar to mixture models such as
the Gaussian mixture model [18]:

q
(c)
t |rt ∼ multi(Rrt

c,1, ...,R
rt
c,C). (3)
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The state of chainc at t+ 1 thus is determined by:

h
(c)
t |h

(1)
t−1, . . . , h

(C)
t−1, q

(c)
t = c′ ∼







multi(E(c)

h
(c)
t

,1
, . . . ,E

(c)

h
(c)
t

,S
) c′ = c

multi(F(c′)

h
(c′)
t

,1
, . . . ,F

(c′)

h
(c′)
t

,S
) c′ 6= c

. (4)

We present some intuitions to the model description here:Eq. 3 and Eq. 4 define the concept of
influence in our model. The intuition is that at each timet each chainc will sampleq(c)t from Eq.
3 to decide which chain will influence it att + 1. Notice that since the model is dynamical andrt

is changing, the distribution ofq(c)t is different at differentt as we are sampling from different con-
figuration matrices at differentt. This is how changing influence is captured by switching between
influence configurations in our model. Ifq(c)t happens to be the same chainc, we will use transition
matriceE(c) and chainc’s current state to determine its state att + 1; if q(c)t = c′ 6= c, we will use
transition matriceF(c′) and chainc′’s current state to determine chainc’s state att + 1. E

(c) and
F

(c) are bothS × S matrices, and they are similar to the transition matrix in HMM literature.

Given the model description, the likelihood function is

L(O, h, q, r|E,F,R,V) (5)

=

T
∏

t=2

{

Prob(rt|rt−1)

C
∏

c=1

[

Prob(O(c)
t |h

(c)
t )Prob(h(c)

t |h
(1,...,C)
t−1 , q

(c)
t−1)Prob(q(c)t |rt)

]}

×
C
∏

c=1

Prob(O(c)
1 |h

(c)
1 )Prob(h(c)

1 )Prob(r1). (6)

The model is intractable. Therefore we use the variational method for inference. We kindly invite
the reader to the full version of this paper for detail in model learning[19].

3 Experiments on Human Interaction Data

We here demonstrate an application of using our dynamical influence process to predict turn taking–
who will speak next in the interaction process, and we show that it is possible to achieve good
accuracy in prediction given only the binary audio volume variance observations, with no informa-
tion from the audio content. The detail of the experiment set-up can be found in our full paper[19].
We also implement two competing methods: a)Nearest Neighbor(NN) and b) TESLA [21]. We here
present the results in Table 1.

The dataset used in this experiment comes from a group discussion experiment in [20]. Researchers
in [20] recruited 40 groups with four subjects in each group for this experiment. During the exper-
iment, each subject was required to wear the sociometric badge on their necks for audio recording,
and each group was required to perform two different group discussion tasks: a brainstorming task
(BS) and a problem solving (PS) task in two different settings: (a) beingco-located(CO) in the same
room around a table and (b) beingdistributed(DS) in two rooms with only audio communication
being available between the pairs. (The badge is deployed inboth cases for audio collecting.)

The accuracy for each algorithm is listed in Table 1. We also show the prediction accuracy for the
half of all samples that have more complex interactions, i.e., higher entropy. For our dynamical
influence based approach, we list error rates forJ = 1, 2 and3. Except DS+BS, We notice that
our algorithm outperforms others in all categories with differentJ . This performance is quite good
considering that we are using only volume and that a human canonly predict at around50% accuracy
for similar tasks[22].

More importantly, our model seems to perform much better than the competing methods for more
complex interactions. For simple interactions, it seems thatJ = 1 or even NN perform the best due
to the fact that there is little shift in influence structure during the discussion. However, when han-
dling complex interaction processes, the introduction of aswitching influence dynamics improves
the performance as shown in Table 1. Our results suggest thatthe dynamical influence assumption
in our model is reasonable and necessary in modeling complexgroup dynamics, and in one case it
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Table 1: Accuracy for different turn taking prediction methods on both the full dataset and the half
of the dataset with more complex interactions. The random guess accuracy is33%. Human accuracy
is typically around50% for similar tasks[22].

ACCURACY ACCURACY
ALL SAMPLES COMPLEX INTERACTION SAMPLES

METHODS DS+BS DS+PS CO+BS CO+PS DS+BS DS+PS CO+BS CO+PS
TESLA 0.41 0.42 0.32 0.25 0.44 0.37 0.37 0.17
NN 0.58 0.60 0.48 0.50 0.47 0.47 0.38 0.26
Ours(J=1) 0.45 0.67 0.75 0.63 0.45 0.56 0.77 0.62
Ours(J=2) 0.46 0.58 0.65 0.34 0.47 0.58 0.67 0.46
Ours(J=3) 0.50 0.60 0.55 0.48 0.47 0.73 0.65 0.65

can improve prediction accuracy to above60% for PS tasks. However, in simple cases, the model
achieves the highest performance only whenJ = 1, i.e. the influence is static, and a higherJ will
only lead to overfitting.

We also demonstrate how to use the dynamical influence model for understanding the seasonal
difference in flu spreading and flu prediction. The detail canbe found in our full paper[19].

4 Conclusions

We have developed an unsupervised generative model that captures the system dynamics as the out-
come of both the influence between individuals and the dynamics of influence. Our model directly
tackles the important sociological question of analyzing who influence whom in social systems. In
our model,C HMM chains interact with each other according to a family of influence matrices
describing different interaction patterns, and switch between them over time. A fast variational in-
ference scheme is also developed to handle large system suchas the flu epidemic in US. We have
demonstrated the performance of our model in applications of detecting structural change, predict-
ing turn taking and understanding epidemic dynamics. Our model provides a new perspective for
modeling dynamics in network structures and influence structures.
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[27] M.C. Gonźalez, C.A. Hidalgo, and A.L. Barabási. Understanding individual human mobility patterns.Nature, 453(7196):779–782, 2008.

5


