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Abstract

We present a new way for modeling 49cial influenceand 2) the well-observed
property of social influence — the influence strength betweéividuals changes
over time (e.g., friendships break and reform). We show thatunsupervised
generative switching Bayesian approach can simultang@agitures the system
dynamics as the outcome of both (i) the influence betweeniohails (each mod-
eled as an HMM), and (ii) the changes of influence itself uginty individual
observations. We describe here a variational Expectdfiaximization (EM) al-
gorithm for inference. In our experiments, we illustratplagations with synthetic
and real data of detecting structural change, predicting taking by analyzing
a real group discussion behavior dataset and understafidimjluence patterns
between US states. Results demonstrate that our approaddtrisng alternative
for modeling complex interacting social systerhs.

1 Introduction

Our proposed model tackles the problem of analyzing andrstatedingwho influences whoin a
social system, such as a group discussion process, whidbeleasan interesting question for social
scientists for the last six decades [1]. Influence is alser@sting in the context of leadership where
the influence between one another has been recognized asfecaig factor of group performance
[2]. However, it remains a difficult question to define and midatie concept oihfluencein a formal
mathematical way.

In this paper, we handle this problem by modeling each agemsbcial system as a Hidden Markov
Chain with a finite set of states, and all chains interact w#bh other according to a family of influ-
ence configurations, each of which describes a differeatation pattern among nodes. Influence
between two agents is modeled as how the current state ofgem ean effect the future states of
the other agents.

In the prevailing studies on social computing, quantieagiforts have focused on tisgatic picture

of the influence [3] [4], namely who is influencing whom in aisbsystem when longitudinal data
on human interactions is aggregated in a snapshot. Howthese is extensive evidence leading
us to think that influence is indeed a dynamical process[5][tis can also be seen from many
real-world experiences: Friendship is not static, and #sgn who currently possesses the most
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influence over you may be different after some time; In a teslinegotiation with many parties

involved, your most active opponent may change due to tdmft &nd strategy shift over time...

Therefore, we believe that, in a social system such as a gimgussion session, the influence
between subjects fluctuates as well, and a better modeldskake the changes of influence itself
into consideration.

Our approach is in essence a switching version of influenadeh{@], a special type of Bayesian
network. We are interested in the challenge of inferringuirfice and learning parameters in a
social system based solely on individual observations tinee, i.e., without actually knowing the
individual interaction patterns. We define influence betw®e nodes as the conditional probability
between the internal states of these two nodes in consedintie frames. We approach the problem
of dynamical influence by introducing a family of differenfluence configurations, each of which
captures a different interaction pattern among nodes. éatdtacer; is included also to represent
the index of the current active influence configuration atetim r, gradually switches between
different influence configurations, and itself is treatechastochastic process as well. Therefore,
our model not only captures the dynamics of individual bébhray but also the underlying latent
variables tracing changes in influence. It should be notatithour approach system dynamics and
changing influence are learned simultaneously in a unifeeaiéwork, and the learning algorithm is
unsupervised.

We are fully aware of the class of time-varying models: fro@RV [16] to TESLA [17], to name
two. We model the dynamics of every node and edge in a netvmstkad of feature functions as
in EGRM. Our work is also significantly different from TESLAVe consider changing influence,
which are continuous real values, as the topological dyosinfis shown in our turn-taking experi-
ment, our generative model is more suitable in capturingrttezaction of nodes and the dynamics
of the interaction strength simultaneously.

2 Our Model

Our approach, the Dynamical Influence Process, is a swiatitension to the existing influence
model [9]. It is composed of' interacting chains. In this model, similar to an HMM, eaclaich

c e {1,...,C} takes one of a finite number of latent states at any discretettihic) e{l,...,S}.
Corresponding to each latent staﬁé) , we observe?t(c) which follows a conditional probability dis-

tribution ProlfO )| 1{*)), usually known as the emission probability in HMM literatutn practice,
it can either be multinomial for discrete observations ou€séan mixture for continuous observa-
tions.

We proceed to describe the cross-chain interactions ofsjrstem. M; ; denotes théth row and
jth column of matrixM in the following discussion. In this model, we hayalifferent interaction
configurations described by matricBs', ..., R/ and only one configuration, € {1,...,J} is
active at timet. J is a hyper-parameter set by the user, and we cover the détsélecting the
values of hyper-parameters in the full version[19]. The sl@thanges its interaction configurations
{r¢}1=1,2,... slowly with respect to the sampling period according to tikwing Markov prices:

Tep1|re ~ mUlti(Vn,l,"' ,Vrt,J)’ 1)

whereV is constrained by another hyper-parametérp" > 0. A largep" will ensure that our
model switch slowly to other influence configurations anditemremain in the current configura-
tion:

(Vyots---, Vy,.s) ~ Dirichlet(10°,10°, ... 10°" ..., 10°). )
11 1 1
17 27 coey Tty vony J

Given that the interaction configuration is in effect, the latent state of chainin this system at

time ¢t + 1 is determined by another random chqfﬁ) € {1,...,C} according to a multinomial
distribution described by the configuration matRX*. This is similar to mixture models such as
the Gaussian mixture model [18]:

¢\ |ry ~ MUIi(RY,, ..., RL'). A3)



The state of chain att + 1 thus is determined by:
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We present some intuitions to the model description hEe: 3 and Eq. 4 define the concept of

influence in our model. The intuition is that at each titreach chaire will sampleqt(c) from Eq.
3 to decide which chain will influence it at+ 1. Notice that since the model is dynamical and

is changing, the distribution ojﬁc) is different at different as we are sampling from different con-
figuration matrices at differerit This is how changing influence is captured by switching leetw

influence configurations in our model.qlf) happens to be the same chajiwe will use transition
matriceE(®) and chainc’s current state to determine its state at 1; if qt(c) = ¢ # ¢, we will use
transition matrice® (<) and chain’’s current state to determine chails state at + 1. E(© and
F(©) are bothS x S matrices, and they are similar to the transition matrix in MNiterature.

Given the model description, the likelihood function is

£(0,h,q,7|E,F,R,V) (5)
T
= TT{Protirsfre—s) [T [ProtiOf” n)Probni” |, i) Probig(” )] |
t=2 c=1
C
x [ Prob(0f”n{”)Prok(n{”)Prokiry). (6)
c=1

The model is intractable. Therefore we use the variatiorethod for inference. We kindly invite
the reader to the full version of this paper for detail in nmddarning[19].

3 Experiments on Human Interaction Data

We here demonstrate an application of using our dynamiflakince process to predict turn taking—
who will speak next in the interaction process, and we shat ithis possible to achieve good
accuracy in prediction given only the binary audio volumegarce observations, with no informa-
tion from the audio content. The detail of the experimentugetan be found in our full paper[19].
We also implement two competing methods: a)Nearest NeigRby and b) TESLA [21]. We here
present the results in Table 1.

The dataset used in this experiment comes from a group discusxperiment in [20]. Researchers
in [20] recruited 40 groups with four subjects in each groopthis experiment. During the exper-
iment, each subject was required to wear the sociometrigéad their necks for audio recording,
and each group was required to perform two different grospudision tasks: a brainstorming task
(BS) and a problem solving (PS) task in two different se#tin@) beingco-locatedCO) in the same
room around a table and (b) beidistributedDS) in two rooms with only audio communication
being available between the pairs. (The badge is deploybdtincases for audio collecting.)

The accuracy for each algorithm is listed in Table 1. We alsmwsthe prediction accuracy for the
half of all samples that have more complex interactions, higher entropy. For our dynamical
influence based approach, we list error ratesfoe 1,2 and3. Except DS+BS, We notice that
our algorithm outperforms others in all categories withetént.J. This performance is quite good
considering that we are using only volume and that a humapmigrpredict at around0% accuracy
for similar tasks[22].

More importantly, our model seems to perform much betten the competing methods for more
complex interactions. For simple interactions, it seeras.fh= 1 or even NN perform the best due
to the fact that there is little shift in influence structurgidg the discussion. However, when han-
dling complex interaction processes, the introduction eéching influence dynamics improves
the performance as shown in Table 1. Our results suggesthalynamical influence assumption
in our model is reasonable and necessary in modeling congptexp dynamics, and in one case it



Table 1: Accuracy for different turn taking prediction medls on both the full dataset and the half
of the dataset with more complex interactions. The randoesgaccuracy 33%. Human accuracy
is typically around50% for similar tasks[22].

ACCURACY ACCURACY

ALL SAMPLES COMPLEX INTERACTION SAMPLES
METHODS | DS+BS DS+PS CO+BS CO+P$ DS+BS DS+PS CO+BS CO+PS
TESLA 0.41 0.42 0.32 0.25 0.44 0.37 0.37 0.17
NN 0.58 0.60 0.48 0.50 0.47 0.47 0.38 0.26

Ours(J=1) 0.45 0.67 0.75 0.63 0.45 0.56 0.77 0.62
Ours(J=2) 0.46 0.58 0.65 0.34 0.47 0.58 0.67 0.46
Ours(J=3) 0.50 0.60 0.55 0.48 0.47 0.73 0.65 0.65

can improve prediction accuracy to abdi®% for PS tasks. However, in simple cases, the model
achieves the highest performance only whiea- 1, i.e. the influence is static, and a highkwill
only lead to overfitting.

We also demonstrate how to use the dynamical influence madehtlerstanding the seasonal
difference in flu spreading and flu prediction. The detail barfound in our full paper[19]

4 Conclusions

We have developed an unsupervised generative model thatreaphe system dynamics as the out-
come of both the influence between individuals and the dyoswofi influence. Our model directly
tackles the important sociological question of analyzirgwnfluence whom in social systems. In
our model,C HMM chains interact with each other according to a family mwfiluence matrices
describing different interaction patterns, and switchwlaetn them over time. A fast variational in-
ference scheme is also developed to handle large systermasuble flu epidemic in US. We have
demonstrated the performance of our model in applicatiblet@cting structural change, predict-
ing turn taking and understanding epidemic dynamics. Oulehprovides a new perspective for
modeling dynamics in network structures and influence &iraes.
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