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The Next 30 Minutes

« Motivations and a brief history:
- Latent semantic analysis
- Probabilistic latent semantic analysis
« Latent Dirichlet allocation:
- Model structure and priors
- Approximate inference algorithms
- Evaluation (log probabilities, human interpretation)

* Post-LDA topic modeling...
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The Problem with Information

 Needle in a haystack: as
more information
becomes available, it is
harder and harder to find
what we are looking for

 Need new tools to help us
organize, search and
understand information

www belavarsion.org/~statanasinatype/news/26/
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A Solution?

« Use topic models to
discover hidden topic-
based patterns

« Use discovered topics to
annotate the collection

e Use annotations to
organize, understand,
summarize, search...
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Topic (Concept) Models

 Topic models: LSA, PLSA, LDA
 Share 3 fundamental assumptions:

- Documents have latent semantic structure (“topics”)
- Can infer topics from word-document co-occurrences
- Words are related to topics, topics to documents

« Use different mathematical frameworks

- Linear algebra vs. probabilistic modeling
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Topics and Words

human evolution disease
genome evolutionary host
dna species bacteria
genetic organisms diseases
genes life resistance
sequence origin bacterial
gene biology new
molecular groups strains
sequencing  phylogenetic control
map living infectious
information diversity malaria
genetics group parasite
mapping new parasites
project two united
sequences common tuberculosis

hanna m. wallach :: topic modeling

computer
models
information
data.
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations

nips 2009



Documents and Topics

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many senes does anorganisin need o
survive! Last week at the genome meeting
here, rwo genome researchers with radically
difterent approaches presented complemen-
tary views of the basic genes needed for life.
One rescarch ream, using computer analy-
ses to compare known cenomes, concluded
that teday’s organisms can be sustained with
just 250 eenes, and thar the carliest life forms
required a mere 128 venes. The
other researcher mapped genes
in a simple parasite and esti-
mated that for this organism, /
800 genes are plenty to do the
job—bur that anything short
of 100 wouldn't be ecnough.
Although the numbers don't
match precisely, those predicrions

* Genome Mapping and Sequenc-

“are not all thar far apart,” especially in
comparison to the 75,000 senes in the hu
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
8CC number. But coming up with a consen-
sus answer may be more than just 4 cencric
numbers game, particularly as more and
more senomes are completely mapped and
sequenced. “Tt may be a way of organizing
any newly sequenced genome,” explains
Arcady Mushegian, a computational mo-
lecular biologist at the National Center
tor Biotechnology Informarion (NCBI)
in Bethesda, Maryland. Comparing an
Sedurdant and

Genes carasita-specihc

) [?E‘E‘dEU. genags remaved
for biccnemical

pathways
+22 genes

Relatea anc
mocern genes
rermoy e
-122 genes

w0
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a2
L
ADAPTED F BOM NCBI

Ancestral
gene sel

ing, Cold Spring Harbor, New York,
May 8 to 12.

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

SCIENCE » VOL. 272« 24 MAY 1996
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Latent Semantic Analysis

(Deerwester et al., 1990)

« Based on ideas from linear algebra

« Form sparse term-document co-occurrence matrix X
- Raw counts or (more likely) TF-IDF weights
« Use SVD to decompose X into 3 matrices:

- Urelates terms to “concepts”
- Vrelates “concepts” to documents
- 2 Is a diagonal matrix of singular values
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Singular Value Decomposition

1. Latent semantic analysis (LSA) is a theory and method for ...
2. Probabilistic latent semantic analysis is a probabilistic ...
3. Latent Dirichlet allocation, a generative probabilistic model ...

allocation
analysis
Dirichlet
generative
latent

LSA
probabilistic
semantic
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Probabilistic Modeling

 Treat data as observations that arise from a generative
probabilistic process that includes hidden variables

- For documents, the hidden variables represent the
thematic structure of the collection

* Infer the hidden structure using posterior inference

- What are the topics that describe this collection?
e Situate new data into the estimated model
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Probabilistic LSA

(Hofmann, 1999)

topic
assignment topics
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D
document-specific observed
topic distribution word

hanna m. wallach :: topic modeling :: nips 2009



Advantages and Disadvantages

v’ Probabilistic model that can be easily extended and
embedded in other more complicated models

X Not a well-defined generative model: no way of
generalizing to new, unseen documents

X Many free parameters (linear in # training documents)

X Prone to overfitting (have to be careful when training)
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Latent Dirichlet Allocation

Topics
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Graphical Model

Dirichlet topic
parameters assignment topics
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Dirichlet Distribution

« Distribution over K-dimensional positive vectors that
sum to one (i.e., points on the probability simplex)

F(Zk amk) l_[ amg—1

« Two parameters:

- Base measure, e.g., m (vector)
- Concentration parameter, e.q., a (scalar)
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Varying Parameters
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Asymmetric? Symmetric?

(Wallach et al., 2009)

 People (almost always) use symmetric Dirichlet priors
with heuristically set concentration parameters

- Simple, but is it the best modeling choice?

 Empirical comparison:
04 ~ Dir(aom) and ¢; ~ Dir(Bu)

T T
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Priors and Stop Words
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Intuition

 Topics are specialized distributions over words

- Want topics to be as distinct as possible

- Asymmetric prior over { ¢+ } makes topics more similar to
each other (and to the corpus word frequencies)

- Want a symmetric prior to preserve topic “distinctness”
« Still have to account for power-law word usage:

- Asymmetric prior over { @4 } means some topics can be
used much more often than others
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Topics

Posterior Inference

Topic proportions and
assignmenis

Daocuments
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Posterior Inference

4/ S
@ @@ @<@

« Infer (or integrate out) all latent variables, given tokens
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Inference Algorithms

(Mukherjee & Blei, 2009; Asuncion et al., 2009)

« Exact inference in LDA is not tractable

 Approximate inference algorithms:
- Mean field variational inference (Blei et al., 2001; 2003)
- Expectation propagation (Minka & Lafferty, 2002)
- Collapsed Gibbs sampling (Griffiths & Steyvers, 2002)
- Collapsed variational inference (Teh et al., 2006)
« Each method has advantages and disadvantages
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Evaluating LDA: Log Probability

 Unsupervised nature of LDA makes evaluation hard

« Compute probability of held-out documents:

- Classic way of evaluating generative models
- Often used to evaluate topic models

 Problem: have to approximate an intractable sum
P(w|w’, 2/, am, Bu) =
ZP(w,zl w’,z’, am, Bu)
Z
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Computing Log Probability

(Wallach et al., 2009)

Simple importance sampling methods

The “harmonic mean” method (Newton & Raftery, 1994)

- Known to overestimate, used anyway
Annealed importance sampling (Neal, 2001)

- Prohibitively slow for large collections of documents
Chib-style method (Murray & Salakhutdinov, 2009)

“Left-to-Right” method (waliach, 2008)
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Reading Tea Leaves

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences
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Word and Topic Intrusion

(Chang et al., 2009)

Word Intrusion Topic Intrusion

1/10 6/10 DOUGLAS_HOFSTADTER

BN Sphabet FONNIMEY processor [ESHENS disk Douglas Richard Hofstadter (born February 15,1945 in |

I

I New York, New York) is an American academic whose
2/ 10 I' research focuses on consciousness, thinking and

1

1

creativity. He is best known for ", first published in

molecule education study  university school student .
Show entire excerpt

e s c s cc s rsrrrrc e r s s e e e - -
3/ 10 student school study  education research university  science learn
linguistics  actor film comedy director movie \ i ; i oy ; .
human life scientific  science scientist experiment  work idea
3710 play role good actor star career show  performance
islands island bird coast  portuguese mainland write work book publish life friend influence father

« Can humans find the “intruder” word/topic?
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Post-LDA Topic Modeling
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« LDA can be embedded in more complicated models

« Data-generating distribution can be changed
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Today's Workshop

Text and Ianguage (S. Gerrish & D. Blei; M. Johnson; T Landauer)
Time-evolving networks (. xing)

Visual recognition (L. Fei-Fei)

FiInance (G. Doyle & C. Elkan)

Archeology (p. Mimno)

Music analysis (b. Hu & L. Saul)

... even some theoretical work (p. sontag & D. Roy)
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