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The Next 30 Minutes

● Motivations and a brief history:

– Latent semantic analysis

– Probabilistic latent semantic analysis

● Latent Dirichlet allocation:

– Model structure and priors

– Approximate inference algorithms

– Evaluation (log probabilities, human interpretation)

● Post-LDA topic modeling...
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The Problem with Information

● Needle in a haystack: as 
more information 
becomes available, it is 
harder and harder to find 
what we are looking for

● Need new tools to help us 
organize, search and 
understand information
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A Solution?

● Use topic models to 
discover hidden topic-
based patterns

● Use discovered topics to 
annotate the collection

● Use annotations to 
organize, understand, 
summarize, search...
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Topic (Concept) Models

● Topic models: LSA, PLSA, LDA

● Share 3 fundamental assumptions:

– Documents have latent semantic structure (“topics”)

– Can infer topics from word-document co-occurrences

– Words are related to topics, topics to documents

● Use different mathematical frameworks

– Linear algebra vs. probabilistic modeling
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Topics and Words
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Documents and Topics
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Latent Semantic Analysis

● Based on ideas from linear algebra

● Form sparse term–document co-occurrence matrix X

– Raw counts or (more likely) TF-IDF weights

● Use SVD to decompose X into 3 matrices:

– U relates terms to “concepts”

– V relates “concepts” to documents

– Σ is a diagonal matrix of singular values

(Deerwester et al., 1990)
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Singular Value Decomposition

1. Latent semantic analysis (LSA) is a theory and method for ...
2. Probabilistic latent semantic analysis is a probabilistic ...
3. Latent Dirichlet allocation, a generative probabilistic model ...
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Probabilistic Modeling

● Treat data as observations that arise from a generative 
probabilistic process that includes hidden variables

– For documents, the hidden variables represent the 
thematic structure of the collection

● Infer the hidden structure using posterior inference

– What are the topics that describe this collection?

● Situate new data into the estimated model
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Probabilistic LSA

topics

observed
word

document-specific
topic distribution

topic
assignment

(Hofmann, 1999)
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Advantages and Disadvantages

✔ Probabilistic model that can be easily extended and 
embedded in other more complicated models

✗ Not a well-defined generative model: no way of 
generalizing to new, unseen documents

✗ Many free parameters (linear in # training documents)

✗ Prone to overfitting (have to be careful when training)
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Latent Dirichlet Allocation

(Blei et al., 2003)
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Graphical Model

Dirichlet
parameters

Dirichlet
parameters
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Dirichlet Distribution

● Distribution over K-dimensional positive vectors that 
sum to one (i.e., points on the probability simplex)

● Two parameters:

– Base measure, e.g., m (vector)

– Concentration parameter, e.g., α (scalar)
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Varying Parameters
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Asymmetric? Symmetric?

● People (almost always) use symmetric Dirichlet priors 
with heuristically set concentration parameters

– Simple, but is it the best modeling choice?

● Empirical comparison:  

and

(Wallach et al., 2009)
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Priors and Stop Words
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Intuition

● Topics are specialized distributions over words

– Want topics to be as distinct as possible

– Asymmetric prior over {     } makes topics more similar to 
each other (and to the corpus word frequencies)

– Want a symmetric prior to preserve topic “distinctness”

● Still have to account for power-law word usage:

– Asymmetric prior over {      } means some topics can be 
used much more often than others 
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Posterior Inference
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Posterior Inference

● Infer (or integrate out) all latent variables, given tokens

latent variables
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Inference Algorithms

● Exact inference in LDA is not tractable

● Approximate inference algorithms:

– Mean field variational inference (Blei et al., 2001; 2003)

– Expectation propagation (Minka & Lafferty, 2002)

– Collapsed Gibbs sampling (Griffiths & Steyvers, 2002)

– Collapsed variational inference (Teh et al., 2006)

● Each method has advantages and disadvantages

(Mukherjee & Blei, 2009; Asuncion et al., 2009)
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Evaluating LDA: Log Probability

● Unsupervised nature of LDA makes evaluation hard

● Compute probability of held-out documents:

– Classic way of evaluating generative models

– Often used to evaluate topic models

● Problem: have to approximate an intractable sum
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Computing Log Probability

● Simple importance sampling methods

● The “harmonic mean” method (Newton & Raftery, 1994)

– Known to overestimate, used anyway

● Annealed importance sampling (Neal, 2001)

– Prohibitively slow for large collections of documents

● Chib-style method (Murray & Salakhutdinov, 2009)

● “Left-to-Right” method (Wallach, 2008)

(Wallach et al., 2009)
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Reading Tea Leaves
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Word and Topic Intrusion

(Chang et al., 2009)

● Can humans find the “intruder” word/topic?
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Post-LDA Topic Modeling

● LDA can be embedded in more complicated models

● Data-generating distribution can be changed
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Today's Workshop

● Text and language (S. Gerrish & D. Blei; M. Johnson; T Landauer)

● Time-evolving networks (E. Xing)

● Visual recognition (L. Fei-Fei)

● Finance (G. Doyle & C. Elkan)

● Archeology (D. Mimno)

● Music analysis (D. Hu & L. Saul)

● ... even some theoretical work (D. Sontag & D. Roy)



questions?

(thanks to Dave Blei for letting me steal pictures/content etc.)
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