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Finding Needles in Haystacks

« As more information
becomes available, it can
be harder and harder to
find what we want

« We don't even always
know what we want!

 Need new tools to help us
organize, search and
understand information

www belavarsion.org/~statanasinatype/news/26/
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A Solution: Topic Models

« Use topic models to
discover hidden topic-
based patterns

« Use discovered topics to
annotate the collection

e Use annotations to
organize, understand,
summarize, search...
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Documents & Topics

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many senes does anorganisin need o
survive! Last week at the genome meeting
here, rwo genome researchers with radically
difterent approaches presented complemen-
tary views of the basic genes needed for life.
One rescarch ream, using computer analy-
ses to compare known cenomes, concluded
that todav’s organisms can be sustained with
just 250 eenes, and thar the carliest life forms
required a mere 128 venes. The
other rescarcher mapped genes
in a simple parasite and esti-

mated that for this organism, /
800 genes are plenty to do the
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Although the numbers don'r +22 genes I 8
" o Miriimal (128
match precisely, those predicrions ene set. | (g £
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N Ancealral =

gene sel

* Genome Mapping and Sequenc-

“are not all thar far apart,” especially in
comparison to the 75,000 senes in the hu
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
8CC number. But coming up with a consen-
sus answer may be more than just 4 cencric
numbers game, particularly as more and
more senomes are completely mapped and
sequenced. “Tt may be a way of organizing
any newly sequenced genome,” explains
Arcady Mushegian, a computational mo-
lecular biologist at the National Center
tor Biotechnology Informarion (NCBI)
in Bethesda, Maryland. Comparing an

Sedurdant and

ing, Cold Spring Harbor, New York,

Stripping down. Computer analysis yields an esti-

May 8 to 12. mate of the minimum modern and ancient genomes.

SCIENCE » VOL. 272« 24 MAY 1996

topic models: priors, stop words and languages

hanna m. wallach



Probabilistic Modeling

 Treat data as observations that arise from a generative
probabilistic process that includes hidden variables:

- For documents, the hidden variables represent the
thematic structure of the collection

e Infer the hidden structure using posterior inference:

- What are the topics that describe this collection?
e Situate new data into the estimated model:

- Which topics best describe the new documents?
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Documents < Topics <« Words

Topics
Zene .04
dna g.e2
genetic ©.01
life g.62
evolve g.a1

organism @.81

=

birain . a4
neuron 002
neryve g.al1
data .62
number .02

computer .81
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Probabilistic LSA

(Hofmann, 1999)

topic
assignment topics
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Latent Dirichlet Allocation

(Blei et al., 2003)

Dirichlet topic
parameters assignment topics

l
olNpyN|pslo

N A T
) T
document-specific observed Dirichlet
topic distribution word parameters
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Dirichlet Distribution

« Distribution over K-dimensional positive vectors that
sum to one (i.e., points on the probability simplex)

F(Zk amk) l_[ amg—1

« Two parameters:

- Base measure m (positive vector; sums to one)
- Concentration parameter a (positive scalar)
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An Aside: The Simplex

« K-dimensional probability distributions (i.e., points on
the K-1 simplex) can be plotted in (K-1)-d:

A

p=(pa.PB.Pc)=(1,0,0) /

p=(pA,pB,pc)=(%,%,%)

N s

B C

p=(pa.pg.pc)=1(0,1,0) p=(pa.pPg.,pc)=1(0,0,1)
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Dirichlet Parameters
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Latent Dirichlet Allocation
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symmetric priors:
uniform base measures
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rethinking Ida: why priors matter

hanna m. wallach, david mimno, andrew mccallum



Priors for LDA

« Almost all work on LDA uses symmetric Dirichlet priors
- Two scalar concentration parameters: a and 3

« Concentration parameters are usually set heuristically

« Some recent work on inferring optimal concentration
parameter values from data (Asuncion et al., 2009)

* No rigorous study of the Dirichlet priors:

- Base measure: asymmetric vs. symmetric
- Treatment: optimize vs. integrate out
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Topic Modeling in Practice

Help! All my topics consist of “the, and of, to, a ...”
- Preprocess data to remove stop words
Now all my topics consist of “data, model, results ...”

- Make a new corpus-specific stop word list
Wait, but how do | choose the right number of topics T

- Evaluate probability of held-out data for different T

That sounds really time-consuming

- Use a nonparametric model ...
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Symmetric - Asymmetric

« Use priorover © ={01,...,0p} as a running example

« Uniform base measure —» nonuniform base measure

O ~ Dir(au) © ~ Dir(am)

T T

« Asymmetric prior: some topics more likely a priori
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Predictive Distributions

* Predictive probability of topic t in document d given Z

P(t|d, Z,am) = J d@4P(t|04)P(6y| Z, am)

Nt|d+0(mt
B Ng+ o

« If t has not yet occurred in d then P(t|d, Z,am) = m;

* Ntg is smoothed with topic-specific quantity amy
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Handling Unknown m

 Can take a fully Bayesian approach:
- Give m a Dirichlet prior: m ~ Dir(a’u)
- Integrate m out thanks to conjugacy:

P(t|d, Z, a, ad’u) = J dmP(t|d, Z, am)P(m| Z, a’u)
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An Observation

« As a' —» o, the asymmetric hierarchical Dirichlet prior
over © approaches a symmetric Dirichlet prior:

/

Nt+aT
Ntjg + a A o
diNe+a’  Nyd+ 7
é
Ng+a Ng+ a

« Symmetric Dirichlet prior is a special case of the
asymmetric hierarchical Dirichlet prior
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Four Combinations of Priors
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Inferred Topics and Stop Words

symm. prior over & asymm. prior over ¢
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Results: Log Probabilities

=
= =
= o ]
o au o
w "‘E I /%
I iy E’/"
E o GI- /
Mo i
= B = W / /
. e N [
a | 7 % E
E | fﬁ h %
e T 3 /%
= g‘ -2
& T =50 5= i
| | | | | | | [ | T
0 1000 3000 5000 25 50 75 100
iteration # topics

hanna m. wallach :: topic models: priors, stop words and languages



Sampled Concentration Parameters

« Sampled concentration parameters from “AA”
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* Prior over O is effectively symmetric: “AA” - “AS”
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Intuition

 Topics are specialized distributions over words

- Want topics to be as distinct as possible

- Asymmetric prior over { ¢+ } makes topics more similar to
each other (and to the corpus word frequencies)

- Want a symmetric prior to preserve topic “distinctness”
« Still have to account for power-law word usage:

- Asymmetric prior over { 84 } means some topics (e.q.,
“the, a, of, to ...”) can be used more often than others
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Conclusions

e Careful thinking about priors can yield new insights
- e.qg., priors and stop word handling are related
 For LDA the choice of prior is surprisingly important:

- Asymmetric prior for document-specific topic distributions
- Symmetric prior for topic-specific word distributions

« Rethinking priors for LDA facilitates new topic models

- e.qg., polylingual topic model ...
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NESCAI 2010

« April 16-18 @ UMass Amherst

* http://nescai.cs.umass.edu/cfp.php
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