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Finding Needles in Haystacks

● As more information 
becomes available, it can 
be harder and harder to 
find what we want

● We don't even always 
know what we want!

● Need new tools to help us 
organize, search and 
understand information
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A Solution: Topic Models

● Use topic models to 
discover hidden topic-
based patterns

● Use discovered topics to 
annotate the collection

● Use annotations to 
organize, understand, 
summarize, search...
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Topics ↔ Words
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Documents ↔ Topics



hanna m. wallach   ::    topic models: priors, stop words and languages

Probabilistic Modeling

● Treat data as observations that arise from a generative 
probabilistic process that includes hidden variables:

– For documents, the hidden variables represent the 
thematic structure of the collection

● Infer the hidden structure using posterior inference:

– What are the topics that describe this collection?

● Situate new data into the estimated model:

– Which topics best describe the new documents?
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Documents ↔ Topics ↔ Words
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Probabilistic LSA

topics

observed
word

document-specific
topic distribution

topic
assignment

(Hofmann, 1999)
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Latent Dirichlet Allocation

Dirichlet
parameters

Dirichlet
parameters

topics
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document-specific
topic distribution

topic
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(Blei et al., 2003)
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Dirichlet Distribution

● Distribution over K-dimensional positive vectors that 
sum to one (i.e., points on the probability simplex)

● Two parameters:

– Base measure     (positive vector; sums to one)

– Concentration parameter α (positive scalar)
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An Aside: The Simplex

● K-dimensional probability distributions (i.e., points on 
the K-1 simplex) can be plotted in (K-1)-d:

A

B C
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Dirichlet Parameters
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Latent Dirichlet Allocation

symmetric priors:
uniform base measures



rethinking lda: why priors matter

hanna m. wallach, david mimno, andrew mccallum



hanna m. wallach   ::    topic models: priors, stop words and languages

Priors for LDA

● Almost all work on LDA uses symmetric Dirichlet priors

– Two scalar concentration parameters: α and β

● Concentration parameters are usually set heuristically

● Some recent work on inferring optimal concentration 
parameter values from data (Asuncion et al., 2009)

● No rigorous study of the Dirichlet priors:

– Base measure: asymmetric vs. symmetric

– Treatment: optimize vs. integrate out
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Topic Modeling in Practice

● Help! All my topics consist of “the, and of, to, a ...”

– Preprocess data to remove stop words

● Now all my topics consist of “data, model, results ...”

– Make a new corpus-specific stop word list

● Wait, but how do I choose the right number of topics T

– Evaluate probability of held-out data for different T

● That sounds really time-consuming

– Use a nonparametric model ...
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Symmetric → Asymmetric

● Use prior over                             as a running example

● Uniform base measure → nonuniform base measure

● Asymmetric prior: some topics more likely a priori
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Predictive Distributions

● Predictive probability of topic   in document    given

● If   has not yet occurred in    then 

●        is smoothed with topic-specific quantity 
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Handling Unknown m

● Can take a fully Bayesian approach:

– Give     a Dirichlet prior:

– Integrate     out thanks to conjugacy:
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An Observation

● As α' → ꝏ, the asymmetric hierarchical Dirichlet prior 
over Θ approaches a symmetric Dirichlet prior: 

● Symmetric Dirichlet prior is a special case of the 
asymmetric hierarchical Dirichlet prior
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Four Combinations of Priors

“SS”

“AS”

“SA”

“AA”



hanna m. wallach   ::    topic models: priors, stop words and languages

Inferred Topics and Stop Words
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Results: Log Probabilities
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Sampled Concentration Parameters

● Sampled concentration parameters from “AA”

● β' Is large compared to

● Prior over Φ is effectively symmetric: “AA” → “AS” 
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Intuition

● Topics are specialized distributions over words

– Want topics to be as distinct as possible

– Asymmetric prior over {     } makes topics more similar to 
each other (and to the corpus word frequencies)

– Want a symmetric prior to preserve topic “distinctness”

● Still have to account for power-law word usage:

– Asymmetric prior over {     } means some topics (e.g., 
“the, a, of, to ...”) can be used more often than others 
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Conclusions

● Careful thinking about priors can yield new insights

– e.g., priors and stop word handling are related

● For LDA the choice of prior is surprisingly important:

– Asymmetric prior for document-specific topic distributions

– Symmetric prior for topic-specific word distributions

● Rethinking priors for LDA facilitates new topic models

– e.g., polylingual topic model ...
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NESCAI 2010

● April 16-18 @ UMass Amherst

● http://nescai.cs.umass.edu/cfp.php



questions?
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