Machine Learning, Predictive Text, and Topic Models

Hanna Wallach
University of Massachusetts Amherst
wallach@cs.umass.edu
Outline

• What is machine learning?
• Examples of machine learning in practice:

$30: Dinner, Cambridge MA
$50: Bus ticket, Cambridge MA
$5000: Hotel suite, Hong Kong
$20: Beer, Amherst MA
$10: Lunch, Amherst MA

Hanna Wallach Machine Learning, Predictive Text, and Topic Models
Machine Learning (ML)

- There are increasingly large amounts of digital data available:

- Machine learning uses computers to find the most salient features in data to further knowledge and make life easier

... with as little human input as possible
Uncertainty

- There is uncertainty in almost all real world situations:

- ML explicitly represents uncertainty using probability:
 - $\Pr(\text{lemon}) = \text{how certain I am that this is a lemon}$

- Probability provides a framework for reasoning under uncertainty
USPS Digit Recognition

- **Problem:**
 - USPS needs to sort letters by zip code

- **Solution:**
 - Teach a computer to recognize hand-written digits
 - Only ask human when computer is uncertain:

![Images of hand-written digits with 1 or 7 marked]
Credit Card Fraud

- Problem:
 - Want to detect credit card fraud

- Solution:
 - Train a computer to recognise normal and abnormal usages
 - Alert card-holder if abnormal pattern is detected

$30: Dinner, Cambridge MA
$50: Bus ticket, Cambridge MA
$10: Lunch, Amherst MA
$20: Beer, Amherst MA
$10: Lunch, Amherst MA
$30: Dinner, Cambridge MA
$50: Bus ticket, Cambridge MA
$5000: Hotel suite, Hong Kong
$20: Beer, Amherst MA
$10: Lunch, Amherst MA
Sorting News Stories by Genre

Dmitry Medvedev on the Record
BusinessWeek - 7 hours ago
On Dec. 10, Russian President Vladimir Putin revealed the name of the candidate he will back in Russia’s presidential election in March.

Video: Putin will be my Prime Minister: Medvedev RussiaToday
A cautious welcome in Europe for Medvedev
International Herald Tribune
all 1,286 news articles »

Deadlock Stymies Global Climate Talks
New York Times - 50 minutes ago
By T.1OMAS FULLER This article was reported by Thomas Fuller, Peter Gelling and Andrew C. Revkin, and was written by Mr. Fuller. NUSA DUA, Indonesia - As a United Nations conference on global warming here entered its final stretch, the United States and ...

Video: Bali climate meeting: new environmental pact in focus RussiaToday
Can the Planet be Saved in Bali? TIME
Reuters - Los Angeles Times - International Herald Tribune - CNN
all 828 news articles »

Show more stories Show fewer stories

Fed Lowers Rate by a Quarter Point to 4.25 Percent (Update6)
Bloomberg - 2 hours ago
By Craig Torres Dec. 11 (Bloomberg) -- The Federal Reserve lowered its benchmark interest rate by a quarter point to 4.25

Ask.com Adds Priv Search Data
Wall Street Journal - J
By SCOTT MORRISON SA
Tuesday a "privacy switch
Predictive Text Entry

- e.g., T9 or iTAP
- Used on cell phones
- Enables use of reduced keyboard
- Enter as much text as possible with as few gestures as possible

Text ➔ Gestures
(as few as possible)
Predictive Text Entry

- This is like the reverse of text compression
- Text compression: want to go from as much text as possible to as small a representation as possible

Text → Bit string (preferably short)
Writing and Text Compression

- **Optimal** text compression

![Diagram](text.png)
Writing and Text Compression

- Optimal text compression and writing with **predictive text entry**

\[\text{Text} \xrightarrow{\text{probabilistic model}} \text{Bit string (preferably short)}\]

\[\text{Text} \xleftarrow{\text{probabilistic model}} \text{Gestures (as few as possible)}\]
Dasher [http://www.dasher.org.uk]

- Driven by 2D continuous gestures
- Uses a model of language
- Available for
 - Windows
 - Linux
 - Mac OS X
 - Pocket PC
 - etc.
Dasher: Screen Layout

- Box sizes are proportional to probabilities
- Probabilities come from a letter-based language model
- \(P(X) = b \)
 \(P(X, Y) = a \)
Dasher: Dynamics

Point where you want to go

- Like driving a car
- Motion sickness?
- Not if you're driving!
Dasher: Benefits

- Keyboards: one gesture per character
- Dasher: some gestures select many characters
- Works with any language
- Inaccurate gestures can be compensated for by later gestures
Topic Models

- Humans can read a document and identify the small number of topics that best characterize that document.
Topic Models

- Topics are mixtures of words and documents are mixtures of topics.
Topic Models

- Infer topic information from word-document co-occurrences
Example Topics

[Tenenbaum et al.]

<table>
<thead>
<tr>
<th>STORY</th>
<th>FIELD</th>
<th>SCIENCE</th>
<th>BALL</th>
<th>JOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORIES</td>
<td>MAGNETIC</td>
<td>STUDY</td>
<td>GAME</td>
<td>WORK</td>
</tr>
<tr>
<td>TELL</td>
<td>MAGNET</td>
<td>SCIENTISTS</td>
<td>TEAM</td>
<td>JOBS</td>
</tr>
<tr>
<td>CHARACTER</td>
<td>WIRE</td>
<td>SCIENTIFIC</td>
<td>FOOTBALL</td>
<td>CAREER</td>
</tr>
<tr>
<td>CHARACTERS</td>
<td>NEEDLE</td>
<td>KNOWLEDGE</td>
<td>BASEBALL</td>
<td>EXPERIENCE</td>
</tr>
<tr>
<td>AUTHOR</td>
<td>CURRENT</td>
<td>WORK</td>
<td>PLAYERS</td>
<td>OPPORTUNITIES</td>
</tr>
<tr>
<td>READ</td>
<td>COIL</td>
<td>RESEARCH</td>
<td>PLAY</td>
<td>WORKING</td>
</tr>
<tr>
<td>TOLD</td>
<td>POLES</td>
<td>CHEMISTRY</td>
<td>FIELD</td>
<td>TRAINING</td>
</tr>
<tr>
<td>SETTING</td>
<td>IRON</td>
<td>TECHNOLOGY</td>
<td>PLAYER</td>
<td>SKILLS</td>
</tr>
<tr>
<td>TALES</td>
<td>COMPASS</td>
<td>MANY</td>
<td>BASKETBALL</td>
<td>CAREERS</td>
</tr>
<tr>
<td>PLOT</td>
<td>LINES</td>
<td>MATHEMATICS</td>
<td>COACH</td>
<td>POSITIONS</td>
</tr>
<tr>
<td>TELLING</td>
<td>CORE</td>
<td>BIOLOGY</td>
<td>PLAYED</td>
<td>FIND</td>
</tr>
<tr>
<td>SHORT</td>
<td>ELECTRIC</td>
<td>FIELD</td>
<td>PLAYING</td>
<td>POSITION</td>
</tr>
<tr>
<td>FICTION</td>
<td>DIRECTION</td>
<td>PHYSICS</td>
<td>HIT</td>
<td>FIELD</td>
</tr>
<tr>
<td>ACTION</td>
<td>FORCE</td>
<td>LABORATORY</td>
<td>TENNIS</td>
<td></td>
</tr>
</tbody>
</table>
Transfer between Topics [Mimno]
Entities and Topics [Newman et al.]

<table>
<thead>
<tr>
<th>Sept. 11</th>
<th>Fear</th>
<th>US Pride</th>
<th>Defense</th>
<th>Agencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>attack</td>
<td>0.017</td>
<td>fear 0.023</td>
<td>american 0.062</td>
<td>defense 0.039</td>
</tr>
<tr>
<td>victim</td>
<td>0.016</td>
<td>public 0.019</td>
<td>flag 0.046</td>
<td>missile 0.039</td>
</tr>
<tr>
<td>tragedy</td>
<td>0.015</td>
<td>threat 0.011</td>
<td>country 0.035</td>
<td>system 0.032</td>
</tr>
<tr>
<td>missing</td>
<td>0.013</td>
<td>concern 0.010</td>
<td>war 0.028</td>
<td>administration 0.019</td>
</tr>
<tr>
<td>lost</td>
<td>0.012</td>
<td>anger 0.008</td>
<td>nation 0.022</td>
<td>arms 0.019</td>
</tr>
<tr>
<td>families</td>
<td>0.012</td>
<td>crisis 0.008</td>
<td>history 0.012</td>
<td>weapon 0.019</td>
</tr>
<tr>
<td>lives</td>
<td>0.010</td>
<td>support 0.007</td>
<td>feel 0.010</td>
<td>nuclear 0.015</td>
</tr>
<tr>
<td>memorial</td>
<td>0.010</td>
<td>sense 0.007</td>
<td>symbol 0.009</td>
<td>test 0.014</td>
</tr>
<tr>
<td>happened</td>
<td>0.009</td>
<td>seen 0.007</td>
<td></td>
<td>missiles 0.013</td>
</tr>
<tr>
<td>dead</td>
<td>0.009</td>
<td>changed 0.006</td>
<td></td>
<td>treaty 0.012</td>
</tr>
<tr>
<td>E130</td>
<td>0.980</td>
<td>E55 0.720</td>
<td>E55 1.000</td>
<td>E145 0.780</td>
</tr>
<tr>
<td>NY</td>
<td>0.188</td>
<td>BUSH 0.290</td>
<td>AMERICA 0.164</td>
<td>RUSSIA 0.113</td>
</tr>
<tr>
<td>WTC</td>
<td>0.091</td>
<td>CLINTON 0.133</td>
<td>US 0.102</td>
<td>PENTAGON 0.073</td>
</tr>
<tr>
<td>AMERICA</td>
<td>0.071</td>
<td>WHITE HSE 0.094</td>
<td>WASH. DC 0.064</td>
<td>CHINA 0.057</td>
</tr>
<tr>
<td>GOD</td>
<td>0.036</td>
<td>WASH DC 0.075</td>
<td>BUSH 0.037</td>
<td>CLINTON 0.055</td>
</tr>
<tr>
<td>WASH. DC</td>
<td>0.035</td>
<td>CONGRESS 0.062</td>
<td>WW2 0.024</td>
<td>BUSH 0.052</td>
</tr>
<tr>
<td>NYC</td>
<td>0.027</td>
<td>POWELL 0.032</td>
<td>CIVIL WAR 0.021</td>
<td>PUTIN 0.046</td>
</tr>
<tr>
<td>GIULIANI</td>
<td>0.023</td>
<td>UN 0.014</td>
<td>WEST 0.012</td>
<td>N. KOREA 0.033</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRESIDENT 0.014</td>
<td>RIGHT 0.012</td>
<td>IRAQ 0.029</td>
</tr>
</tbody>
</table>
Topics and Email

- Enron email corpus:
 - 250k email messages, 23k people

Sally -
Attached are the hypertiles from the final report out at yesterday’s ASE Studio Workshop. The CD is finished and on its way to Houston. The files are organized by team:
Hammer - Sales and Marketing, Vision Stmt, Mission Stmt, Target Market, How to Approach, Pricing, SLA
Pliers - Producst and Services - Consulting Based
Saw - Infrastructure Transition Plan
Wrench - Producst and Services - Basic Outsourcing
I hope these help with your meeting tomorrow. Let me know if there is anything else I can do to help.
Lisa P
Selecting Email Keywords [Dredze et al.]

Sally -
Attached are the hypertiles from the final report out at yesterday’s ASE Studio Workshop. The CD is finished and on its way to Houston. The files are organized by team:
- **Hammer** - Sales and Marketing, Vision Stmt, Mission Stmt, Target Market, How to Approach, Pricing, SLA
- **Pliers** - Product and Services - Consulting Based
- **Saw** - Infrastructure Transition Plan
- **Wrench** - Product and Services - Basic Outsourcing

I hope these help with your *meeting* tomorrow. Let me know if there is anything else I can do to help.

Lisa P

- **Without topics:** producst pliers stmt hammer wrench
- **With topics:** team meeting services lisa ase
Senders, Recipients, Topics

[McCallum et al.]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>operations 0.0321</td>
<td>market 0.0567</td>
<td>state 0.0404</td>
<td>blackberry 0.0726</td>
</tr>
<tr>
<td>team 0.0234</td>
<td>power 0.0563</td>
<td>california 0.0367</td>
<td>net 0.0557</td>
</tr>
<tr>
<td>office 0.0173</td>
<td>price 0.0280</td>
<td>power 0.0337</td>
<td>www 0.0409</td>
</tr>
<tr>
<td>list 0.0144</td>
<td>system 0.0206</td>
<td>energy 0.0239</td>
<td>website 0.0375</td>
</tr>
<tr>
<td>bob 0.0129</td>
<td>prices 0.0182</td>
<td>electricity 0.0203</td>
<td>report 0.0373</td>
</tr>
<tr>
<td>open 0.0126</td>
<td>high 0.0124</td>
<td>davis 0.0183</td>
<td>wireless 0.0364</td>
</tr>
<tr>
<td>meeting 0.0107</td>
<td>based 0.0120</td>
<td>utilities 0.0158</td>
<td>handheld 0.0362</td>
</tr>
<tr>
<td>gas 0.0107</td>
<td>buy 0.0117</td>
<td>commission 0.0136</td>
<td>stan 0.0282</td>
</tr>
<tr>
<td>business 0.0106</td>
<td>customers 0.0110</td>
<td>governor 0.0132</td>
<td>fyi 0.0271</td>
</tr>
<tr>
<td>houston 0.0099</td>
<td>costs 0.0106</td>
<td>prices 0.0089</td>
<td>named 0.0260</td>
</tr>
</tbody>
</table>

S.Beck 0.2158	J.Dasovich 0.1231	J.Dasovich 0.3338	R.Haylett 0.1432
L.Kitchen 0.0826	J.Steffes 0.1133	R.Shapiro 0.2440	T.Geaccone 0.0737
S.Beck 0.0826	J.Dasovich 0.1133	J.Dasovich 0.2440	R.Haylett 0.0737
J.Lavorato 0.0530	R.Shapiro 0.1133	J.Steffes 0.1394	T.Geaccone 0.0737
S.Beck 0.0530	M.Taylor 0.0218	J.Dasovich 0.1394	R.Haylett 0.0420
S.White 0.0530	E.Sager 0.0218	R.Sanders 0.1394	D.Fossum 0.0260

“Chief Operations Officer”

“Government Relations Executive”

Hanna Wallach

Machine Learning, Predictive Text, and Topic Models

24
Summary

- Machines can learn a lot from unstructured digital data
- We can use machine learning to build useful applications, some of which you are already using!
Questions?