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Dependency Parsing

[det] The [n]girl [v]hit [det]the [n]ball [p]with [det]the [n]bat
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Dependency Parsing

NS AT

root [det] The [n]girl [v]hit [det]the [n]ball [p]with [det]the [n]bat

» Dependency trees encodes syntactic relationships between words
» Each node is a part-of-speech-tagged, cased! word

» An edge from word w,, to w,y means w,y is a dependent of w,,

1Cases: upper, lower, mixed, first capitalized word
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Talk Outline

NS AT N

root [det] The [n]girl [v]hit [det]the [n]ball [p]with [det]the [n]bat

» Four hierarchical Bayesian dependency models:

Bayesian reinterpretation of a classic dependency model
Extension of this model using hierarchical Pitman-Yor priors
Bayesian dependency model with “syntactic” states
Bayesian dependency model with “semantic” states

vV vy VvYyy
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Eisner's Generative Dependency Model (Eisner '96)

» Conditioned on their
parent, left and right
children each form a
first-order Markov chain

» Final child in each
direction is a special
stop symbol

» Stop symbols enable

simultaneous generation
of words and trees
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Eisner's Generative Dependency Model (Eisner '96)

root
» Conditioned on their
parent, left and right \
children each form a [v] hit
first-order Markov chain // \
» Final child in each
stop [n] girl

direction is a special

stop symbol // \

» Stop symbols enable stop  [det] The stop
simultaneous generation
of words and trees / \
stop stop

Bayesian Models for Dependency Parsing Using Pitman-Yor Priors Hanna M. Wallach



Generating a Tagged, Cased Word

N

[n] ball ?
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Generating a Tagged, Cased Word

> Generate a tag given
the tagged, cased parent

s el e slbling \

[v] hit

N

[n] (7]
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Generating a Tagged, Cased Word

> Generate a tag given
the tagged, cased parent

s el e slbling \

> Generate an uncased [V] hit
word given the tagged,
cased parent word and / \\
the just-generated tag [p]?
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Generating a Tagged, Cased Word

> Generate a tag given
the tagged, cased parent

s el e slbling \

» Generate an uncased
word given the tagged,
cased parent word and / \\
the just-generated tag [p] with
» Generate a case value / \
given the just-generated

tag and uncased word

Bayesian Models for Dependency Parsing Using Pitman-Yor Priors Hanna M. Wallach



Estimating Probabilities from Data

v

Use a corpus D = {s,w,c, t} of tagged, cased sentences and trees

v

Count relevant occurrences in D, e.g.,

N = # times uncased word w with tag s has case value ¢

clsw

Use counts to form “estimators”, e.g., Njqy / N sw

>

» The more specific the context, the sparser the counts

> “Smooth” more specific estimators with less specific ones
>

Same approach as interpolated n-gram language modeling
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Estimating Probabilities from Data

» Contexts are obvious in language modeling (Wp—2 wp—1 — wp—_1)

» Choice of contexts is much less obvious in parsing, e.g.,
tag word — tag or tag word — word

» Eisner estimates e.g., the case value probability as follows:

P(case = c|tag = s,word = w, D) =
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» Choice of contexts is much less obvious in parsing, e.g.,
tag word — tag or tag word — word

» Eisner estimates e.g., the case value probability as follows:

Ngjs +0.5 &
N_|5 +0.5
N~\sw +3

Nc|sw +3

P(case = c|tag = s,word = w, D) =
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Contexts for Tags and Uncased Words

P(tag| parent tagged cased word, sibling tag, dir)

parent tag parent word parent case sibling tag dir
parent tag sibling tag ~ dir
parent tag dir

P(word | parent tagged cased word, dir)

tag parent tag  parent word parent case dir
tag parent tag dir
tag
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A Hierarchical Bayesian Dependency Model

» We can redefine Eisner's model from a Bayesian perspective

> Treat each probability vector as a random variable, e.g.,
1, = distribution over case values given context s and w
» Draw each probability vector from a Dirichlet prior, e.g.,

"psw ~ Dir('l»bsw; ai, mS)

> m; is a tag-specific base measure (distribution over case values)
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Base Measures

Base measures of Dirichlet priors, e.g., {ms}2_;, are also unknown

v

v

Can also draw each mg from a Dirichlet prior

v

Eisner: tag word — tag — uniform, so

m; ~ Dir (ms; ag,u)

v

This induces a hierarchical Dirichlet prior over v,

v

Can integrate out mg and ), to obtain the predictive distribution
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Predictive Distributions

» Predictive probability of case value c is

P(case = c|tag = s,word = w, D, a1, ap) =
,/\\Ic s T o L
C
Nc|sw +aq —Al
N4|s + o

N-|5w + o

» Bottom-level counts N5, and N, are raw observation counts

» Higher-level counts are not necessarily raw observation counts
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Relationship to Eisner's Model

» Compare Eisner's probabilities with predictive distributions, e.g.,

Eisner Bayesian
P(C|55W7D): P(C|57WaDaa1;a0):
Njs +0.5 1 Nejs + a0 ¢
N +3— = N t+oa ——
i Nis+0.5 AT R + ag
N-|sw +3 N~|sw + o

» Only differences: concentration parameters, higher-level counts
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Advantages of the Bayesian Reinterpretation

» There are (at least) three ways of varying the Bayesian model:
1. Concentration parameters (e.g., a1, ap) can be sampled
> Need not be arbitrarily chosen or set using cross validation

2. Counts need not correspond to observation counts
3. Can use priors other than the hierarchical Dirichlet distribution

> e.g., the hierarchical Pitman-Yor process

» All three variations have the potential to improve model quality
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Using Hierarchical Pitman-Yor Priors

» Can use Pitman-Yor priors instead of Dirichlet priors, e.g.,

wsw ~ PY (d’sw | a, €1, mS)
m; ~ PY (ms | ag, €9, u)

» ¢; and ¢g are discount parameters
» When €; and €q are zero, identical to a Dirichlet distribution
» PY priors give distributions that better resemble natural language

» Better at modeling rare words
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Pitman-Yor Predictive Distributions

» Probability of case value c is now given by:

P(case = c|tag = s,word = w, D, a1, ap, €1, €0) =
AA/’c|s + (a0 + €0 I—-|s) %
N|S + g

Mc|sw + (al +éa L-|sw)

N~|sw + a1

» Counts are now given by Mg, = Ncjs — €1 Lcjs €tc.
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Relationship to Bayesian n-gram Language Modeling

v

PY priors have been used for language modeling (e.g., Teh '06)

v

Kneser-Ney smoothing is equivalent to

» Setting concentration parameters (as) to zero
» Using the “minimal path” approximate inference scheme

v

Kneser-Ney smoothing is one of the best smoothing methods

v

Dependency models are lexicalised (unlike, e.g., PCFGs)

v

PY priors are particularly appropriate for dependency models
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Using the Model

v

Can now compute P(D | az, ag, €1, €0)

v

If this were language modeling, we'd be done

v

For real sentences, only words, tags and case values are known

» Goal: infer dependency trees for real sentences

v

Use training data (sentences + trees) to learn the model

v

Determine trees for test sentences

» Sample trees using Metropolis-Hastings (Johnson et al. '07)
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Parsing Experiments

Wall Street Journal sections of Penn Treebank:

v

» Training (sections 2-21): 39,832 sentences
> Testing (section 23): 2,416 sentences

v

Parse accuracy: percentage of parents correctly identified

v

Maximum probability trees used for comparison purposes

v

For efficiency, part-of-speech tags fixed to:

» Training: “gold standard” tags from Treebank
> Testing: tags from Ratnaparkhi's tagger ('96)
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Results: Parse Accuracy

O Dirichlet
— B Pitman-Yor

Parse Accuracy

72 74 76 78 80 82 84 86

Fixed Sampled Fixed Sampled

Maximal Path Minimal Path

PY prior, sampled hyperparameters: 26% error reduction over Eisner
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Latent Variable Parsing Models

» Generative framework allows for inclusion of other latent variables
> e.g., “syntactic” and “semantic” topics

» Specialized syntactic or semantic distributions over words
» Can define a (simpler) model that uses latent variables:

» Sentences are untagged and uncased
> Siblings are not taken into account (i.e., first order model)
» Distribution over children depends on parent and latent state variable

Hanna M. Wallach
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First Order Models

SN NN

root the girl hit the ball with the bat

» Computationally more efficient than models that consider siblings

» Children are independent of each other given their parent

P(girl hit . with the bat the ball) =
P(the girl hit the ball with the bat)
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“Syntactic” Latent Variables

hit

N

[state]

ball
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“Syntactic” Latent Variables

» Generate a state given \

the parent word hit

N

[state]

N

ball
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“Syntactic” Latent Variables

» Generate a state given

the parent word hit
> Generate a word given / \

the just-generated state [state]

and the parent word \

ball
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“Syntactic” Latent Variables

» Generate a state given
the parent word

> Generate a word given \

the just-generated state [state]

and the parent word \

ball

-/

» Give all probability vectors Dirichlet priors as before
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“Semantic”’ Latent Variables

hit <doc>

[state]

ball
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“Semantic”’ Latent Variables

» Generate a state given \ ‘

the document, as in LDA hit

<doc>

[state]

ball
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“Semantic”’ Latent Variables

» Generate a state given \ ‘

the document, as in LDA hit <doc>
> Generate a word given /
the just-generated state istate]
and the parent word
ball
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“Semantic”’ Latent Variables

» Generate a state given \ ‘

the document, as in LDA hit <doc>

> Generate a word given /

the just-generated state
and the parent word

[state]

ball

» Give all probability vectors Dirichlet priors
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“Syntactic Topics”: Parse Accuracy
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States Inferred from Treebank Sections 2-21

president
director
officer
chairman
executive
head
attorney
manager
chief
secretary

u.s.
california
washington
texas
york
london
japan
canada
france
britain

made
offered
filed
put
asked
approved
announced
left
held
bought

is
are
was
has
have
were
will
had
's
would

would
will
could
should
can
might
had
may
must
owns

10

50

15
20
30
25
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Unsupervised Leave-One-Out Bits-Per-Word

Model Bits-per-Word
LDA 9.08
Deps. only 8.75
Deps. & Syntactic Topics 8.68
Deps. & Semantic Topics 8.25

» The fewer the bits-per-word, the better the model
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Conclusions and Future Work

v

Reinterpreted a classic dependency parser using Bayesian framework

v

Parsing performance is improved by:

» Using Pitman-Yor priors
» Sampling hyperparameters

v

Can incorporate latent variables into the model:

» Syntactic topics that cluster parent—child relationships
» Semantic topics, as in LDA

v

Future work: syntactic + semantic topics
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Questions?

wallach@cs.umass.edu
http://www.inference.phy.cam.ac.uk/hmw26/
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