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Science and Innovation

“Whether it's improving our
health or harnessing clean
energy, protecting our security
or succeeding in the global
economy, our future depends
on reaffirming America's role
as the world's engine of
scientific discovery and
technological innovation.”

— President Barack Obama
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... Behind the Scenes

“The public has generally
treated this progress as
something that just happened,
without recognizing that it is, in
fact, largely the result of a
sustained federal commitment
to support science through
science policies.”

— http://science-policy.net
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Science and Innovation Policy

Goal: identify administrative, financial, political actions

Actions chosen to have impact on, e.qg.,

- Stimulating breakthrough research
- Increasing economic prosperity
- Broadening participation

Government, private sector, education

This talk: statistical models for facilitating efficient,
data-driven science policy decisions
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Examples of Policy Actions

e Funding actions:

- Using federal funds for research on human stem cells
- “People not projects” vs. pre-defined deliverables

e Patenting actions:
- Granting software patents
e Educational actions:

- Running high school outreach activities
- Providing mentoring programs
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Data-Driven Policy Decisions

e Discovery: identifying
possible policy actions

e Prediction: estimating
expected impact

e Evaluation: assessing
observed outcomes

= Automated data analysis
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Data: Products of Collaboration

“Scientific information is both
the basic raw material for, and
one of the principal products
of, scientific research [...]
Scientists find out what other
scientists are accomplishing
through [...] journals, books,
abstracts and indexes,
bibliographies, reviews.”

— NSF Brochure, 1962
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Approach: Statistical Models

e Modeling challenges:

- Aggregating and representing large data sets
- Handling data from sources with disparate emphases
- Reasoning under uncertain information
- Performing efficient inference
e Bayesian latent (hidden) variable models:

- Powerful and flexible [wallach et al. & Adams et al., AISTATS '10]
- This talk: statistical topic models
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My Research Goal

§line .= <CASEBODKS>;

redo unless eof(CASEBOOKS);
1
$line = s/\\\t/xyzdrptmpxyz/g;
@columns = split("\t", Sline);
Scolumns[3] = uc Scolumns[3];

$line = join("\t", @columns);
$line = s/xyzdrptmpxyz/\\\t/g; +

I1 r(wp) [Ty F(Nwit+B)
trw TN t+Wg)

To develop new statistical models and computational tools
for representing and analyzing large quantities of complex
data in order to better enable scientific policy-makers to
Identify and evaluate high-impact policy actions and
advance the study of science and innovation policy.
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Collaborate to Study Collaboration

ATOM-BY-ATOM ANALYSIS
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“There needs to be a greater
focus on what these [science
interaction] data mean [...]
This requires the input of social
scientists, rather than just
those more traditionally
Involved in data capture, such
as computer scientists.”

— Julia Lane, NSF, 24 March 2010
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This Talk

Background: statistical topic models

Building “off-the-shelf” statistical topic models
Finding science-directed research clusters
Evaluating statistical topic models

Current and future research directions
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This Talk

e Background: statistical topic models
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Why Topic Models?
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Documents and Topics

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How man{génesdoes an organism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed for life.
One research team, using computer analy-
ses to compare known genomes, concluded
that today’s organisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 genes. The
other researcher mapped genes
in a simple parasite and esti-
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don’t

match precisely, those predictions

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE +» VOL. 272 * 24 MAY 1996
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“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
800 number. But coming up with a consen-
sus answer may be more than just a genetic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of organizing
any newly sequenced genome,’ explains
Arcady Mushegian, a computational mo-
lecular biologist at the National Center
for Biotechnology Information (NCBI)
in Bethesda, Maryland. Comparing an

Redundant and Belated and

Genes parasite-specific modern genes
needed genes removecd removed
for biochamical —122 genes
pathways
+22 genes f
) l Jee.

Ancestral
gene sat

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.
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probability

Topics and Words

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
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Generative Statistical Modeling

e Assume data was generated by a probabilistic model:

- Model may have hidden structure (latent variables)
- Model defines a joint distribution over all variables
- Model parameters are unknown

e |nfer hidden structure and model parameters from data

e Situate new data into estimated model
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Directed Graphical Models

PGy, X1, ..., xn) = PO _; P(xn | y)

e Nodes: random variables (latent or observed)
e Edges: probabilistic dependencies between variables

e Plates: “macros” that allow subgraphs to be replicated
OO @& %
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Statistical Topic Modeling

[Hofmann, '99]
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Latent Dirichlet Allocation (LDA)

[Blei, Ng & Jordan, '03]
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The State of The Art

e Topic models are extremely popular
e ... but they're not always usable by non-experts

e Need to bridge this gap between producers and
consumers of topic modeling technology:

- Address problems/challenges faced by practitioners
- Question unquestioned assumptions
- Explore the interplay between theory and practice
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This Talk

e Background: statistical topic models

e Building “off-the-shelf” statistical topic models

[Wallach et al., NIPS '09]

Collaborators: Sarah Kaplan, Rotman, University of Toronto; Andrew
McCallum, UMass Amherst; David Mimno, UMass Amherst
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= emergence by analyzing that you can use...

“Off-the-Shelf” Topic Modeling

| want to model technology | have a statistical model

'R

patent abstracts...
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“Off-the-Shelf” Topic Modeling

| want to model technology | have a statistical model
emergence by analyzing that you can use...
patent abstracts...

a a the the
field the of invention
emission carbon a of
an and to to
electron gas and present
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“Off-the-Shelf” Topic Modeling?

Help! All my topics consist Preprocess your data to
of “the, and of, to, a ...” remove stop words...

Now they all consist of Make a domain-specific
“invention, present, thereof ...” list of stop words...

Wait, but how do | choose the Evaluate the probability of unseen
right number of topics? data for different numbers...
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Discrete Probability Distributions

e 3-dimensional discrete probability distributions can be
visually represented in 2-dimensional space:

A

/

N s

B C
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Dirichlet Distribution

e Distribution over discrete probability distributions:

B N
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base measure (mean)

'

p ~ Dir(aom)

T

C
concentration
parameter
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Dirichlet Parameters
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Dirichlet Priors for LDA

N T
D

o\ N/O
@3@@ @?

symmetric priors:
uniform base measures

Hanna M. Wallach :: UMass Amherst :: 28



Dirichlet Priors for LDA

Two scalar concentration parameters: o and 3
Concentration parameters are usually set heuristically
- e.g.,a=50and =0.01W

Some recent work on learning optimal values for the
concentration parameters from data

No rigorous study of the Dirichlet priors:

- e.g., asymmetric vs. symmetric base measures
- Effects of the base measures on the inferred topics
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Symmetric -» Asymmetric

e Use prior over © = {01,...,0p} as a running example

e Uniform base measure —» nonuniform base measure

O ~ Dir(am) © ~ Dir(am)

T T

e Asymmetric prior: some topics more likely a priori
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Hierarchical Asymmetric Dirichlet

e Which topics should be more probable a priori?

- Draw m from a Dirichlet distribution:

ST
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A Theoretical Observation...

e Symmetric Dirichlet is a special case of the hierarchical
asymmetric Dirichlet (large concentration parameter)

A

T 4 ~v

T ~
B C
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Putting Everything Together

O (&)
T FOTO-Omey s O

N T
D

e Asymmetric hierarchical Dirichlet priors
e |Integrate out O, ¢ and base measures

e Learn z and concentration parameters from data
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Data Sets

e Carbon nanotechnology patents:

- Ultimate goal: track innovation and emergence
- Fullerene and carbon nanotube patents
- 1,016 abstracts (~100 words each)
- 103,499 words
- 6,068 unique words
e 20 Newsgroups data (80,012 total words)

e New York Times articles (477,465 total words)
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before —p-

after =—p

Inferred Topics

a a the the
field the of invention
emission carbon a of
an and to to
electron gas and present
the carbon metal composite
a nanotubes catalytic polymer
of nanotube transition matrix
to catalyst catalyst weight
and substrate from fiber
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Sampled Concentration Parameters
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Sampled Concentration Parameters
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Intuition

e Topics should be distinct from each other:

- Asymmetric prior over topics makes topics more similar to
each other (and to corpus-wide word frequencies)

- Want a symmetric prior to preserve topic “distinctness”

e Still have to account for power-law word usage:

- Asymmetric prior over document-specific topic
distributions means some topics (e.qg., “the, a, of, to ..."”)
can be used more often than others in all documents
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Number of Topics
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“Off-the-Shelf” Topic Modeling

| can model technology Great! Let me know if you
emergence by analyzing need any more help! :
patent abstracts!

the carbon metal composite
a nanotubes catalytic polymer
of nanotube transition matrix
to catalyst catalyst weight

and substrate from fiber
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Declining Topics
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Rising Topics
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Building Other Tools

e Topic-based language modeling [wallach, ICML '06]
- Predict the next word given previous words
- Topics can provide useful information
- Have to model stop words

e Polylingual topic modeling [Mimno et al., EMNLP '09]

- Track scientific progress in other countries
- Simultaneously model text in many languages
- Need robustness to word usage in many languages
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This Talk

e Background: statistical topic models
e Building “off-the-shelf” statistical topic models
e Finding science-directed research clusters

[Wallach, Ph.D. Thesis '08]
Collaborators: Ned Talley, NIH; Mark Boguski, Harvard Medical School Library
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National Institutes of Health

e NIH funds biomedical and health-related research
e 27 institutes and centers:

- Often disease-focused (e.qg., cancer, diabetes)
- ... but complicated by politics and expediency
- Diseases cross scientific boundaries

- Overlap in the research funded

e Daunting landscape for choosing research directions,
funding allocations, and policy actions
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Finding Science-Directed Clusters

Lots of information redundancy between institutes

Goal: characterize redundancy and overlap

- To what extent do science-directed clusters correspond
with institute categorizations?

Approach: unsupervised content-based clustering

- Assign each proposal to a single cluster
- Learn the most appropriate number of clusters

Cluster by topic not raw word usage
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NIH Grant Proposals
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Cluster-Based Topic Modeling

cluster-specific Dirichlet
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“Patient-Oriented Services”
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“Cellular and Molecular Biology”

membrane mechanisms screening proteins
proteins molecular high protein
assembly understanding small function
fusion studies throughput complex
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“Biology of Dividing Cells”
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This Talk

Background: statistical topic models
Building “off-the-shelf” statistical topic models
Finding science-directed clusters

Evaluating statistical topic models

[Wallach et al., ICML '09]

Collaborators: David Mimno, UMass Amherst; lain Murray, University of
Edinburgh; Ruslan Salakhutdinov, MIT; Ned Talley, NIH
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Evaluating Topic Models

Topic models are unsupervised so evaluation is hard
A lot of topic modeling research has skirted this issue
Easy to get a sense of topics from “eyeballing” output

- ... but this isn't rigorous evaluation

Existing methods for computing probability of held-out
documents are inaccurate [wallach et al., ICML '09]

- Proposed 2 new, accurate methods
Also need expert-driven evaluation
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Expert-Driven Evaluation

e Scientific policy-makers know their own domains

e Invaluable resource for model evaluation:
- ldentification of good/poor quality topics
- Characterization of different types of topics
e Collaborative research:

- Automated evaluation metrics
- Prior distributions that influence model output
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Evaluation of NIH Topics

e 2 experts from NIH, 150 topics (NINDS coverage)
e Collaboratively developed 3-stage evaluation protocol
e 4 classes of poor quality topics:

- Intruded: 2 or more unrelated concepts

- Chained: e.qg., “fatty acids” = “acids” —» “nucleic acids”
- Unbalanced: mix of general and specific terms

- Random: no clear concept represented
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Evaluation Metrics

e Number of words assigned to each topic (topic size)

e Within-document co-occurrence of the top words

Intruded Chained
sleep cerebellar
sars cerebellum

insomnia pb
cov purkinje

disturbances ag

Hanna M. Wallach
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Automated Evaluation

e \Word co-occurrence-based metric:

- 17 of 20 worst-scoring topics are “bad”
- 18 of 20 best-scoring topics are “good”

e Goal: incorporate co-occurrence information into the
prior over topic-specific word distributions:

- Words that do not co-occur should not have high
probability within the same topic
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This Talk

Background: statistical topic models

Building “off-the-shelf” statistical topic models
Finding science-directed clusters

Evaluating statistical topic models

Current and future research directions
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Diversity of Science

e Policy actions shape the diversity of science:

- ldea diversity: array of different ideas
- Individual diversity: variety of people and organizations

e Goal: develop new methods and tools for:

- Quantifying the diversity of science
- Assessing impact of policy actions on diversity

Collaborators include: Fiona Murray, Sloan School, MIT

Hanna M. Wallach :: UMass Amherst :: 59



Software Development Communities

e Free & open source software (FOSS):

- Complex technological, legal, social structures
— Collaboration on a massive scale

e Most communication is online and publicly available
- Informal documents: messy, unstructured

e Goal: use these data to study organizational and social
processes underlying FOSS development

Collaborators include: Benjamin Mako Hill, Sloan School, MIT; openhatch.org
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Thanks!

Acknowledgements: Mark Boguski, Harvard Medical School Library; Sarah
Kaplan, Rotman, University of Toronto; Andrew McCallum, UMass
Ambherst; David Mimno, UMass Amherst; lain Murray, University of

Edinburgh; Ned Talley, NIH; Ruslan Salakhutdinov



Cross-language Analysis

“He may know one language
backwards and forward, but he
can't communicate with a
scientist who only knows
another: a graphic illustration
of the need for translation of
foreign scientific documents.”

— NSF Brochure, 1962
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Polylingual Topics
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Aligned Corpora

e Fully parallel corpora: direct translations
- Expensive to produce, relatively rare
e Partially parallel corpora: few parallel “glue” tuples
- < 25% is sufficient to obtain aligned topics
e Comparable corpora: documents have similar content

- e.g., Wikipedia in English, Farsi, Finnish, French, German,
Greek, Hebrew, Italian, Polish, Russian, Turkish, Welsh

- e.g., patent-paper pairs (legal vs. scientific language)
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Polylingual Topic Model

N

N
“tuple” of language-specific
aligned documents Dirichlet parameters
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Differences in Topic Emphasis
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Held-Out Log Probability

topic
model

higher is better

e Classic way to evaluate probabilistic generative models

e Involves an intractable sum for topic models
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