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Abstract

Previous work on probabilistic topic models has either focused on models with
relatively simple conjugate priors that support Gibbs sampling or models with
non-conjugate priors that typically require variational inference. Gibbs sampling
is more accurate than variational inference and better supports the construction of
composite models. We present a method for Gibbs sampling in non-conjugate lo-
gistic normal topic models, and demonstrate it on a new class of topic models with
arbitrary graph-structured priors that reflect the complex relationships commonly
found in document collections, while retaining simple, robust inference.

1 Introduction

Collections of documents are rarely unstructured: Some documents belong to hierarchies, others
may be embedded in a network of citations of hyperlinks, almost all documents are situated in
time and space. Not only do these relationships provide information about the documents, they are
themselves an important object of study: What areas of nanotechnology are attracting increasing
attention? What are people writing about in Canton, OH? Which journals and conferences are
influencing each other, and to what degree? In this paper, we present a new class of probabilistic
topic models with arbitrary graphs-structured priors that reflect these sorts of complex relationships.

Models for spatial and temporal data often rely on real-valued state space models such as dynamic
linear models and, more generally, Gaussian Markov random fields (GMRFs). In contrast, topic
models primarily use Dirichlet-multinomial distributions, because they are well-suited to categorical
data and lead to simple Gibbs sampling algorithms. The expressiveness of such models is limited,
however, due to impoverished covariance structure and non-conjugacy with Gaussian models.

We introduce a new class of probabilistic topic models that capture arbitrary network relationships
between documents using Gaussian Markov random fields [13] and logistic normal distributions [1].
Inference in logistic normal topic models has previously been explored by Blei and Lafferty [3, 2],
but has been restricted to variational methods due to the non-conjugacy between the multinomial and
logistic normal distributions. We overcome this restriction by presenting an efficient algorithm for
Gibbs sampling in logistic normal topic models. This algorithm is simple to implement, converges
to the true posterior distribution rather than a variational approximation, and can be easily combined
with existing tools from the substantial body of literature on real-valued state space models [13].

2 Related Work on Graph-Based Topic Models

There are several recently-introduced topic models that capture relationships between documents
by modeling citations and hyperlinks [5, 12, 8, 11]. These models, however, are restricted to di-
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rected links between individual documents. They are not capable of representing general, possibly
undirected, compatibilities between groups of documents, such as spatial relationships.

Mei et al. [11] present a model that interpolates between a graph and a probabilistic latent semantic
analysis. This model does not constitute a coherent generative process. In contrast, the model
presented in this paper is fully generative and uses the graph distribution as a Bayesian prior. As a
result, it is possible to use Bayesian inference methods rather than expectation maximization.

3 Logistic Normal Topic Models

The logistic normal distribution is a distribution on the simplex, obtained by transforming a random
variable drawn from a multivariate Gaussian distribution. A point θ in the T − 1 simplex (i.e., a
T -dimensional logistic normal random variable) can be generated as follows:

1. Generate a T -dimensional vector of parameters β ∈ RT from a T -dimensional Gaussian
distribution with mean µ and covariance matrix Σ: β ∼ N (β;µ,Σ). For identifiability it
is common practice to set µ and Σ such that βT is guaranteed to be zero.

2. Transform β into θ using the logistic transform: θt = exp (βt)PT
t′=1 exp (βt′ )

= exp (βt)

1+
PT−1

t′=1
exp (βt′ )

A logistic normal distribution can be incorporated into a Dirichlet-based topic model, such as latent
Dirichlet allocation, by replacing the Dirichlet priors over the document-specific topic distributions
and topic-specific word distributions with logistic normal priors. In this paper, however, we con-
sider only the former scenario, in which the document-specific topic distributions are drawn from a
logistic normal, and assume that the topic-specific distributions over words are Dirichlet-distributed.
Under such a model, the generative process for a single document (of length Nd) is as follows:

1. Draw a document-specific topic distribution θ(d) from a logistic normal, as above

2. For each position n ∈ {1, . . . , Nd}

(a) Draw a topic assignment: zn ∼ Mult (θ(d))

(b) Draw a word: wn ∼ Mult (φ(zn))

The parameters µ and Σ define the characteristics of the model: If Σ is a diagonal matrix, the model
will exhibit the same covariance characteristics (i.e., uncorrelated topics) as latent Dirichlet alloca-
tion. Meanwhile, a non-diagonal covariance matrix will result in a correlated topic model [3]. Draw-
ing µ from a first-order dynamic linear model will give rise to a discrete dynamic topic model [2].

4 Sampling-Based Inference for Logistic Normal Topic Models

Given a corpus w of D documents, the posterior distribution over latent variables—i.e., the topic
assignments z and logistic normal parameters {β(d)}Dd=1—is as follows:

P (z, {β(d)}Dd=1 |w,µ,Σ) ∝ (1)

P (w | z)
D∏
d=1

(
Nd∏
n=1

exp (β(d)
zn )

1 +
∑T−1
t=1 exp (β(d)

t )

)
N (β(d);µ,Σ)

Due to the non-conjugacy of the logistic normal and multinomial distributions, previous treatments
of logistic normal topic models [2, 3] have relied on variational methods when inferring the latent
topic assignments z and logistic normal parameters {β(d)}Dd=1. In this section, we explain how
these latent variables can instead be inferred using sampling-based methods, despite non-conjugacy
concerns. We take an approach based on blocked Gibbs sampling, in which the topic assignments z
and logistic normal parameters {β(d)}Dd=1 are alternately sampled given all other variables.
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4.1 Sampling Topic Assignments

Given a set of logistic normal parameters {β(d)}Dd=1, the latent topic assignments z can be inferred
using an approach similar to that used in sampling-based treatments of latent Dirichlet allocation [6],
where each zn is sequentially re-sampled from its conditional posterior given all other variables.

In latent Dirichlet allocation, both the document-specific topic distributions {θ(d)}Dd=1 and the topic-
specific word distributions {φ(t)}Tt=1 can be integrated out, due to the conjugacy between the Dirich-
let and multinomial distributions. Assuming symmetric Dirichlet priors (with concentration param-
eters α, γ ∈ R+), the conditional posterior probability for zn= t is therefore

P (zn= t | z\n,w,d, α, γ) ∝ P (wn | zn= t, z\n,w\n, γ)
(
Nt|dn

+ α
1
T

)
, (2)

where d is the set of document indices for the entire corpus, T is the number of topics in the model,
and the subscript “\n” denotes a quantity that excludes data from the nth position in the corpus.

In a logistic normal topic model, however, the document-specific topic distributions {θ(d)}Dd=1 can-
not be integrated out, so the conditional posterior probability for zn= t is instead

P (zn= t | z\n,w,d, {β(d)}Dd=1, γ) ∝ P (wn | zn= t, z\n,w\n, γ) exp (β(d)
t ). (3)

Aside from this difference in posteriors, the algorithm for sampling z in a logistic normal topic
model is identical to that used in sampling-based treatments of latent Dirichlet allocation [6].

4.2 Sampling Logistic Normal Parameters

Given a set of topic assignments z, the posterior distribution over {β(d)}Dd=1 is

P ({β(d)}Dd=1 | z,µ,Σ) ∝
D∏
d=1

(
Nd∏
n=1

exp (β(d)
zn )

1 +
∑T−1
t=1 exp (β(d)

t )

)
N (β(d);µ,Σ). (4)

As a result, inferring {β(d)}Dd=1 is equivalent to learning the parameters of a logistic regression
model with a Gaussian prior, in which the inputs are the document indices d, the labels are the topic
assignments z, and there are exactly D binary feature functions of the form fd(dn) = δ (dn − d).
Each input dn will therefore be associated with a vector of D binary feature values—one for each
feature function. Clearly, in every such vector, only a single feature will have a non-zero value.

Logistic regression parameters are most commonly inferred using numerical optimization meth-
ods, but there are also several Markov chain Monte Carlo methods for Bayesian inference that
use auxiliary variables. Holmes and Held [9, 13] use logistically-distributed auxiliary variables,
which can be represented as a scale mixture of normals with variances drawn independently from a
Kolmogorov-Smirnov distribution. Here, however, we follow the sampling method of Groenewald
and Mokgatlhe [7], in which the auxiliary variables are instead drawn from a uniform distribution.

Groenewald and Mokgatlhe’s method is best explained by starting with the simplified scenario in
which there are two topics and a single document. Since β2 must be constrained to zero for identifi-
ability, this restriction means that the model has only a single unknown logistic normal parameter.

Under this model, the generative process for topic assignments z is as follows:

1. Generate β1 ∈ R from a univariate Gaussian and set β2 to zero

2. Transform β1 into θ using the logistic transform: θ1 = exp (β1)
1+exp (β1)

and θ2 = 1
1+exp (β1)

3. For each position n ∈ {1, . . . , N}
(a) Draw a topic assignment: zn ∼ Mult (θ)

In fact, however, θ1 can be interpreted as the CDF of a logistic distribution,

θ1 =
exp (β1)

1 + exp (β1)
=
∫ β1

−∞

exp (x)
(1 + exp (x))2

dx, (5)

as shown in figure 1(a). Using this interpretation, each zn can be sampled from Mult (θ) as follows:
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Figure 1: The relationship between β1, z and u in a simple model with a single document and two topics.
(a) Given β1, if zn = 1, un (represented by a black dot) must fall below the value of the logistic CDF at β1.
Otherwise, un (represented by a white dot) must fall above the value of the logistic CDF at β1. (b) Given u,
β1 can be anywhere in the interval defined by the maximum black dot and minimum white dot.

1. Draw a vertical line through the x-axis of the CDF at β1, as in figure 1(a)
2. Sample an auxiliary variable un ∼ U (0, 1)
3. Plot un on the vertical line through β1

4. If un lies below the curve, let zn = 1; otherwise let zn = 2

The same approach (i.e., the introduction of a single uniformly-distributed auxiliary variable un for
each topic assignment zn) can also be used to infer β1 from z, given an initial value of β1:

1. Draw a vertical line through the x-axis of the CDF at the current β1

2. For each position n ∈ {1, . . . , N}

(a) Draw un ∼

{
U (0, exp (β1)

1+exp (β1)
) if zn = 1

U ( exp (β1)
1+exp (β1)

, 1) if zn = 2
(b) Plot un on the vertical line through β1, as in figure 1(a)

Having generated an auxiliary variable un for each zn, sampling β1 given z simply corresponds to
shifting the vertical line left or right, within the region bounded as follows:

max
n|zn=1

log
un

1− un
< β1 < min

n|zn=2
log

un
1− un

. (6)

When selecting a new location for the vertical line (i.e., a new value for β1) possible locations must
be weighted according to the prior N (β1;µ1, σ

2
1). This is equivalent to sampling from a normal

distribution multiplied by an indicator function that “zeroes out” the entire real line except for the
segment defined by the lower and upper bounds. Once a new β1 has been selected, the auxiliary
variables can be discarded and the process repeated until sufficient samples have been generated.

The efficiency of this algorithm can be improved by noting that log un

1−un
is monotonic in un. Find-

ing maxn|zn=1 log un

1−un
is therefore equivalent to finding the maximum of N1 =

∑N
n=1 δ (zn − 1)

uniform random variables, while finding minn|zn=2 log un

1−un
is equivalent to finding the minimum

ofN2 =
∑N
n=1 δ (zn−2) uniform random variables. Using standard results from order statistics, the

largest of M uniform random variables is distributed according to Beta (M, 1), while the smallest is
distributed according to Beta (1,M). It is therefore unnecessary to sample all N auxiliary variables:
Given N1 and N2, maxn|zn=1 un and minn|zn=2 un (and hence the lower and upper bounds on β1)
can both be computed directly by drawing a random variable from a beta distribution, scaled and
shifted as appropriate. Finally, the efficiency can be further improved by noting that samples from a
beta distribution with either parameter equal to one can be drawn using transformations of uniform
random variables [4]: u

1
M ∼ Beta (M, 1) and 1− u 1

M ∼ Beta (1,M), where u ∼ U (0, 1).

If the above scenario is extended to include T topics, then T − 1 logistic normal parameters must
be sampled: {βt}T−1

t=1 . For each topic t, the corresponding parameter βt can be sampled using an
approach similar to that described above, by noting that θt = exp (βt)

1+
PT−1

t′=1
exp (βt′ )

can be interpreted as

the CDF of a logistic distribution. A new value for βt can therefore be sampled as follows:
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1. Draw a vertical line through the x-axis of the CDF at the current βt

2. For each position n ∈ {1, . . . , N}

(a) Draw un ∼

U (0, exp (βt)

1+
PT−1

t′=1
exp (βt′ )

) if zn = t

U ( exp (βt)

1+
PT−1

t′=1
exp (βt′ )

, 1) if zn 6= t

(b) Plot un on the vertical line through βt, as in figure 1(a)

Once an auxiliary variable un has been generated for each zn, sampling a new value for βt corre-
sponds to shifting the vertical line left or right within a bounded region, under the constraint that
potential locations must be weighted according to N (β;µ,Σ). The bounds on βt are:

max
n|zn=t

log
C un

1− un
< βt < min

n|zn 6=t
log

C un
1− un

, (7)

where

C = 1 +
T−1∑
t′=1

exp (βt′)(1− δ (t′ − t)). (8)

SinceC is a constant, these bounds are monotonic in un. Consequently, finding maxn|zn=t log C un

1−un

is equivalent to finding the maximum of Nt =
∑N
n=1 δ (zn − t) uniform random variables, while

finding minn|zn 6=t log C un

1−un
is equivalent to finding the minimum of N¬t =

∑N
n=1(1− δ (zn − t))

uniform random variables. Again, standard results from order statistics mean that it is not necessary
to sample an auxiliary variable for each zn: Given Nt and N¬t, maxn|zn=t un and minn|zn 6=t un
(and hence the bounds on βt) can be computed directly by drawing random variables from beta
distributions. An important special case is when Nt = 0. In this situation, there is no lower bound
on βt, so the prior N (β;µ,Σ) is responsible for ensuring that βt stays within a reasonable range.

Finally, Groenewald and Mokgatlhe’s method can be extended to sample the logistic normal parame-
ters for D documents {β(d)}Dd=1 by restricting the topic assignments used to sample each parameter
β

(d)
t to only those assignments zn that belong to document d (i.e., those for which dn = d).

5 Gaussian MRF Priors for Topic Models

Topic-based document similarities often reflect underlying relationships between documents that can
be expressed using some kind of graph structure. For example, documents written in 2005 are more
likely to have similar topic distributions to each other, and, to a lesser extent, to documents written in
2004 and 2006, than to documents written in other years. Similarly, it is more likely that documents
that are in the same or nearby geographical areas will have similar topic distributions than docu-
ments that are geographically dispersed. These kinds of relationships and their effects on document
contents can be modeled using a graph-based prior over document-specific topic distributions.

A Gaussian Markov random field (GMRF) [13] defines a multivariate Gaussian distribution P (x) =
N (x;µ,Σ) over a set of real-valued variables x. Letting G be an undirected graphical model
over x, then P (x) can be decomposed such that each xn is normally distributed conditioned on
its neighbors. Furthermore, there is a direct correspondence between the graph structure of G and
the precision matrix Q = Σ−1 of P (x): Element Qmn is zero if and only if variables xm and
xn are conditionally independent—i.e., there is no edge in G directly connecting xm and xn. If
Q is diagonal, all variables in x are independent. If Q is tridiagonal, then G is a linear chain.
More general graphs, such as irregular lattices, correspond to more complicated precision matrices.
However, Rue and Held [13] show that as long asQ is sparse, inference in GMRFs remains tractable.
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Figure 2: Figure 2(a) shows a linear chain backbone graph with three topic mean parameters µ(A), µ(B) and
µ(C), which in turn determine three, two and two sets of logistic normal document parameters, respectively.
Figure 2(b) shows the precision matrix Q for an intrinsic GMRF associated with this graph. Each of the
first three variables (µ(A), µ(B) and µ(C)) depends on its neighboring mean variables (e.g., µ(A) depends on
µ(B) but not on µ(C)) and the logistic normal variables for all documents belonging to that group (e.g., µ(A)

depends on {β(d)}d∈A. The logistic normal variables are conditionally independent of each other given the
mean variables. Note that the diagonals represent the negative sum of the off-diagonals for each row.

Given an undirected graph G over x it is possible to define P (x) such that the difference in values
between each pair of adjacent variables xm ∼ xn is Gaussian with some precision κ:

P (x) ∝
∏

xm∼xn

exp
(
−κ

2
(xm − xn)2

)
(9)

= exp

(
−κ

2

∑
xm∼xn

(xm − xn)2
)

(10)

= exp
(
−1

2
xTQx

)
. (11)

P (x) is therefore a multivariate Gaussian with precision matrix Q, whose elements are Qnn =
κ deg(xn) and Qmn = −κ for m 6= n. This matrix is singular and does not define a proper
distribution, as P (x) is invariant to the addition of a constant to each xn; equivalently, this model
makes no claims about the absolute value of x, only about relative differences between the variables.
Rue and Held [13] refer to this form of GMRF as an intrinsic GMRF, or IGMRF, of first-order.

In the previous section, we introduced a blocked Gibbs sampling algorithm for inferring z and
{β(d)}Dd=1 in a logistic normal topic model with a single prior mean µ. Using the IGMRF frame-
work, we now extend this algorithm to account for groups of documents that share a prior mean.

As an example, figure 2(a) depicts three groups of documents: Group A contains three documents,
while groups B and C each contain two. Rather than a single prior mean µ, there are three prior
means: µ(A), µ(B) and µ(C). Furthermore, the conditional independences between the means
{µ(g)}g∈{A,B,C} and logistic normal parameters {β(d)}Dd=1 are expressed via the graph structure.

The example in figure 2(a) is best explained by starting with the simplified scenario in which there
are only two topics. Since each β(d)

2 must be constrained to zero for identifiability, this restriction
means that each document has only a single unknown logistic normal parameter. Similarly, µ(g)

1 ∈ R
and µ(g)

2 = 0 for each group g ∈ {A,B,C}. As a result, the model has ten parameters: three
means {µ(g)

1 }g∈{A,B,C}—one for each group—and seven logistic normal parameters {β(d)
1 }7d=1—

one for each document. Using a first order IGMRF, it is possible to define a joint distribution over
{µ(g)

1 }g∈{A,B,C} and {β(d)
1 }7d=1, parameterized by the precision matrix shown in figure 2(b). The

three-by-three block in the top left, denoted byQµµ, contains the degrees of {µ(g)
1 }g∈{A,B,C} along

the diagonal and the graph structure between them (indicated by “-1”s) in the off-diagonal elements.
The top right and bottom left blocks, denoted by Qµβ and Qβµ, represent the connections between
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Algorithm HOL Example “classification” topics

GibbsUniform -876602 web map classification problem based
GibbsLDA -846729 vector classification support learning regression
GibbsLogistic -846746 classification vector selection support regression

Table 1: Held-out likelihood (“HOL”) and example topics. GibbsLDA and GibbsLogistic produce
similar results, while the baseline GibbsUniform algorithm exhibits much worse performance.

the groups and the documents, while the bottom right block, denoted by Qββ , represents the fact

that the logistic normal parameters {β(d)
1 }7d=1 are conditionally independent given the means.

The logistic normal topic model discussed in section 4 is equivalent to a first order IGMRF topic
model with a single group (and hence a single mean µ). Consequently, the sampling algorithm in
section 4.2 can be used without modification to sample the logistic normal parameters {β(d)

1 }Dd=1
of a single-group IGMRF topic model. The only modification necessary for a multi-group IGMRF
topic model is to ensure that the correct group-specific mean is used when sampling each β(d)

1 .

To complete the Gibbs sampling framework for a first order IGMRF topic model, the group-specific
means, e.g., {µ(g)

1 }g∈{A,B,C}, must also be sampled, given all other variables. The posterior distri-
bution over the means is given by the conditional distribution of a multivariate Gaussian, e.g.,

P ({µ(g)
1 }g∈{A,B,C} | {β

(d)
1 }7d=1) = N (Q−1

µµ Qµβ {β
(d)
1 }7d=1,Q

−1
µµ). (12)

Drawing a sample from this distribution requires invertingQµµ. Fortunately, this non-singular sub-
matrix grows only with the number of groups, rather than the size of the entire document collection.

To extend the above scenario to include T topics, the graph structure must be replicated for each topic
t = 1, . . . , T − 1. Inference of the logistic normal parameters {β(d)}Dd=1 can then be performed as
in section 4.2, while inference of the means, e.g., {µ(g)

1 }g∈{A,B,C}, can proceed as above. Since
Qµµ depends only on the graph structure (which is identical for all topics) and κ, matrix inversion
can be performed once andQ−1

µµ shared between topics, provided κ is the same for each topic.

Finally, it is possible to give the precision parameter κ a conjugate gamma prior and sample its value
[13]. It is also possible to to define different precision parameters for different edges in the graph.

6 Experimental Results

In this section, we present two sets of results. The first set demonstrates that the sampling method in
section 4 is as accurate as collapsed Gibbs sampling for Dirichlet-based topic models. Meanwhile,
the second set highlights the effects of the graph-based prior on unseen document prediction.

To evaluate the new sampling algorithm for logistic normal topic models, we compared three mod-
els: The first is a simple logistic normal model, referred to as “GibbsLogistic”, with a single mean
µ, shared by all documents, and κ = 1. Topic assignments and logistic normal parameters for this
model were inferred using the algorithm in section 4. The second model is a standard Dirichlet-
based topic model, referred to as “GibbsLDA”, with optimized document-topic hyperparameters.
The algorithms for sampling latent topic assignments z in GibbsLogistic and GibbsLDA differ only
in the conditional posterior distribution for each assignment zn, as indicated by equations 3 and 2.
Finally, “GibbsUniform” is a baseline model with uniform document-specific topic distributions.

Table 1 shows the held-out likelihood and an example topic for each model, obtained using a corpus
of approximately 50,000 abstracts from computer science papers1. Held-out likelihood was cal-
culated using 10-fold cross-validation by sampling unconditionally from the prior over document-
specific topic distributions [10]. Each model used 50 topics. Topic assignments and parameters (if
any) were inferred using 1000 sampling iterations. The results for GibbsLDA and GibbsLogistic are
almost indistinguishable, while the results for GibbsUniform are, predictably, nearly random. The
sampling algorithm in section 4 is therefore an effective inference method for topic models.

1http://rexa.info
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CVPR NIPS 2001 1990

Single -694911 -1121797 -724802 -67779
Years -691880 -1123727 -724381 -68019
Venues -673732 -1112114 -700662 -64817
Years and Venues -690893 -1118951 -721598 -67745

Table 2: Held-out likelihoods for different document groups under various graph topologies.

To determine the effects of using a graph-based prior over document-specific topic distributions, we
compared four graph structures over group means for the corpus described above: a single mean
(equivalent to LDA; no edges), a linear chain over publication years (21 edges), an irregular graph
based on venue-to-venue citation patterns (85 edges), and a “spatio-temporal” graph with a mean
for each year–venue pair, such that the mean for “NIPS 2005” is connected to the means for “NIPS
2004”, “NIPS 2006” and “ICML 2005” (2458 edges). For each graph structure, two precision
parameters were inferred: an “evolution” precision for edges between group means, and an “obser-
vation” precision for edges connecting the means to document-specific logistic normal parameters.

For each model, the held-out likelihood was computed using a subset of the corpus, e.g., all papers
from a particular venue or year. The remaining papers were used to infer the group-specific means.
Note that if the held-out data and graph structure are aligned such that all documents from a particu-
lar group belong to the held-out set, then the mean for that group is inferred using only information
from adjacent means. The held-out likelihood therefore provides a measure of the extent to which
the inferred mean accurately represents the document-specific topic distributions for that group.

Table 2 shows the held-out likelihood results for papers from CVPR and NIPS, as well as papers
published in 2001 and 1990. The venue graph consistently gives rise to the best held-out likelihood,
even when the held-out data consist of documents from a particular year. These results indicate that
venue is generally a better predictor of topic than year. The year–venue graph exhibits relatively poor
performance compared to the venue graph. It is possible that this difference is due to the fact that
there is only a single “evolution” precision parameter in each model. Inferring different “evolution”
precisions for year–year edges and venue–venue edges may result in improved performance.
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