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Abstract

A nonparametric Bayesian model that clusters documents by topic:
e Robust to variations in terminology

e Automatically infers the number of clusters

e Cluster and topic inference are performed simultaneously

Structured Document Collections

Many document collections exhibit document groupings:
e €.g., papers from a single conference on closely related topics

Document Groupings

Information about these groupings is useful for:

e Navigating and visualizing large corpora

e Learning about relationships between topics

e Learning about relationships between authors and topics
e Performing coarse-grained corpus-based analyses

e Detecting granularity of topics

but...
> Document groupings are often unobserved
Applications

Document groups (clusters) can be used to guide navigation of
corpora and to select relevant subsets of documents
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The set of topics associated with each cluster can be used for:
e Topic-based navigation, e.g., which topics co-occur with this one?

e I[dentification of more and less specific topics, e.q., if a topic occurs
in all clusters it is probably a very general topic

Background: LDA (slei et al., 2003)
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Topics and words are drawn from multinomial distributions:
zZn ~ Mult (64, )
Wnp ~ Mult(¢; )

Asymmetric hierarchical Dirichlet prior over 8g:

0,4~ Dir(a1, m)
m ~ Dir(ag, u)

Symmetric Dirichlet prior over ¢;:

¢t ~ Dlr(ﬁr u)
Given observed documents (i.e., words), latent topic assignments
can be inferred using Gibbs sampling or variational inference.

LDA: Predictive Distributions

Integrate over probability vectors to obtain predictive distributions,
e.qg., for the predictive probability of topic t in document d:

P(t|d,z a1, m)= J Ot|d P(04|Zz, a1, m) dTBd
B Ntjg +a1mt
2.t Ntjg + a1

and so
P(t|d, z, a1, ap, u) = J P(t|d,z, a1, m)P(m|z, ap, u)d'm

Klt + O Ut
Ntjg+ a1 ==
Y.+ Nt +ag

Yt Nejg + 01

Count N¢|q is always equal to the number of times topic t has been
used in document d. However, count N¢ can either be

e the total number of times topic t has been used in the corpus,
e the number of documents in which t has been used,
e Or somewhere between the two.

A Cluster-Based Topic Model
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Model differs from LDA only in the prior over 0g:

0y ~ Dir (a2, my)
where
mqg~G
G ~DP (&, Go)
The distribution over topics for each document @4 is drawn from a
document-specific Dirichlet distribution with base measure mgy. This
base measure is itself drawn from G, which is a draw from a Dirichlet

Process with base distribution Gg and concentration parameter C.
Using the stick-breaking construction, this choice of prior means that

G(mg) = ) Mc5m (mq)

c=1
where

mc ~ Gy

Here, Gg is an asymmetric hierarchical Dirichlet distribution. This
choice of Gg ensures that the only effect of the Dirichlet process on
the prior over @4 is to allow a variable number of document clusters.

Given observed documents (i.e., words) latent topic and cluster
assignments can be inferred using Gibbs sampling by alternating
between sampling topics given clusters and clusters given topics.

Predictive Distributions

The predictive probability of selecting cluster c is:

Nc cis an existing cluster
C cis anew cluster

P(Clc,C)OC{

The predictive probability of selecting topic t in document d is:

P(t|d,cq=c,z ¢, a, ai, ap, Uu) =

Count N¢|q Is always the number of times topic t has been used in
document d (regardless of cluster). However, count N¢j- can be

e the total number of times topic t has been used in cluster c,

e the number of documents in cluster ¢ in which t has been used,
e or somewhere between the two.

Similarly, count N¢ can be

e the total number of times topic t has been used in the corpus,

e the number of documents in which t has been used,

e Or somewhere between the two.

As a1 — oo, this predictive probability tends towards that of LDA.

Related: Dirichlet-Enhanced LSA (vu et al., 2005)

In Dirichlet-enhanced LSA, cluster-specific topic distributions are used
without modification as document-specific topic distributions. Here,
document-specific topic distributions are allowed to vary around the
cluster-specific topic distribution: documents in the same cluster
have similar topic distributions, not identical topic distributions.

Dirichlet-enhanced LSA new cluster-based model

Dirichlet-enhanced LSA effectively ignores document-specific counts
and relies only on cluster- and corpus-specific counts. The
cluster-based topic model in this poster can infer the extent to which
document-specific counts influence the selection of future topics.

LDA DELSA
no cluster-specific counts no document-specific counts

new model
«— interpolates between the two —

Experimental Setup

20 years of NIPS proceedings:
e Training data: papers from 1997-2003 (2,325 papers)
e Test data: papers from 2004-2006 (614 papers)

Three baseline models: latent Dirichlet allocation, Dirichlet-enhanced
LSA, a simple word-based Dirichlet process mixture model.

Results: Perplexity

Perplexity of test data:

|Og2 P(Wtest | wtrain)

Perp.=exp | — test ,

where Nt st js the number of tokens in the test data. Lower perplexity
= better model. P(wtest| wtrain) can be approximated using a variant
of the "harmonic mean" method of Griffiths and Steyvers (2004),
which simulates marginalization over topic/cluster assignments.

model perplexity

word-based DPMM 1489
latent Dirichlet allocation 333
new model 321

Inferred Topics and Clusters

The clusters and topics inferred by Dirichlet-enhanced LSA were
extremely hard-to-interpret and did not obviously correspond to
coherent groups. They are therefore not discussed further. The
word-based DPMM inferred 12 clusters. Four clusters assign high
probability to a few specialized words, making them relatively easy
to interpret. The top words for the other clusters are quite general.

The new cluster-based model inferred 7 clusters. Although a small
number of topics appear in every cluster, all but one of the clusters
assign high probabilities to at least two specialized topics:
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Interpreting the Clusters

The five most frequently used topics for the top four clusters:
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Clustering by Topic and Author

Can instead cluster documents by author and topic. Many more
clusters are inferred: papers that use similar topics but are by
different groups of people are unlikely to be clustered together.
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Future Directions

Other priors:

e e.g., avoid "rich-get-richer" cluster usage by using a uniform
process prior (Dicker and Jensen, 2008) instead of a Dirichlet
process prior. Advantage: documents are assigned to clusters
solely on the basis of "goodness-of-fit". Disadvantage:
non-exchangeable, so inference of cluster assignments is slower.



