CMPSCI 240: "Reasoning Under Uncertainty" Lecture 11

Prof. Hanna Wallach wallach@cs.umass.edu

February 28, 2012

Reminders

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Fourth homework is due on Friday

Recap

Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$

- Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$
- Optimal for events with equal probabilities

- Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$
- Optimal for events with equal probabilities
- ► Variable length codes: use different number of bits to encode each event, e.g., A₁ = 1, A₂ = 01, A₃ = 001, A₄ = 000

- Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$
- Optimal for events with equal probabilities
- ► Variable length codes: use different number of bits to encode each event, e.g., A₁ = 1, A₂ = 01, A₃ = 001, A₄ = 000
- Optimal for events with unequal probabilities

Prefix code: no "code word" is a prefix of any other

- Prefix code: no "code word" is a prefix of any other
- Messages (sequences of events) can be uniquely decoded

- Prefix code: no "code word" is a prefix of any other
- Messages (sequences of events) can be uniquely decoded
- Messages are easy to decode in a left-to-right fashion

- Prefix code: no "code word" is a prefix of any other
- Messages (sequences of events) can be uniquely decoded
- Messages are easy to decode in a left-to-right fashion
- Any binary tree with events as leaves defines a prefix code

- Prefix code: no "code word" is a prefix of any other
- Messages (sequences of events) can be uniquely decoded
- Messages are easy to decode in a left-to-right fashion
- Any binary tree with events as leaves defines a prefix code
- ▶ Not necessarily optimal (information rate ≥ entropy)

Bottom-up construction: build the tree from the leaves up

- Bottom-up construction: build the tree from the leaves up
- Merge two least probable events (leaves or subtrees)

- Bottom-up construction: build the tree from the leaves up
- Merge two least probable events (leaves or subtrees)
- Upper bound on information rate is better:

$$H(A_1,\ldots,A_n) \leq R(A_1,\ldots,A_n) < H(A_1,\ldots,A_n) + 1$$

- Bottom-up construction: build the tree from the leaves up
- Merge two least probable events (leaves or subtrees)
- Upper bound on information rate is better:

$$H(A_1,\ldots,A_n) \leq R(A_1,\ldots,A_n) < H(A_1,\ldots,A_n) + 1$$

Can prove this is optimal for a prefix code

e.g., what is the information content of each event?

- e.g., what is the information content of each event?
 a.g., what is the information rate?
- e.g., what is the information rate?

- e.g., what is the information content of each event?
- e.g., what is the information rate?
- e.g., what is the entropy?

Communicating Perfectly

► Goal: transmit some message, encoded in binary

- ► Goal: transmit some message, encoded in binary
- ► Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)

- Goal: transmit some message, encoded in binary
- ► Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p

- Goal: transmit some message, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p
- Error probability: overall probability of there being an undetected error when using some encoding scheme

Examples of Error Probability

e.g., 8 events represented as 000, 001, 010, ... 111, probability of a single bit flip is 1 / 10, what is the error probability?

Encoding with Redundancy

Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission

Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission
- Error detecting codes vs. error correcting codes

Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are "protected" against errors in transmission
- Error detecting codes vs. error correcting codes
- Fundamental trade-off: want encoding schemes that minimize both the error probability and the information rate

Append a parity bit to each code word such that every code word always contains an even number of ones

- Append a parity bit to each code word such that every code word always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111

- Append a parity bit to each code word such that every code word always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111
- Can detect error if an odd number of bits get flipped

- Append a parity bit to each code word such that every code word always contains an even number of ones
- ▶ e.g., 0000, 0011, 0101, ..., 1100, 1111
- Can detect error if an odd number of bits get flipped
- Cannot detect error if an even number of bits get flipped

Examples of Parity Check Codes

e.g., 8 events represented as 0000, 0011, ..., 1111, probability of a single bit flip is 1 / 10, what is the error probability?

Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other

- Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other
- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other

- Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other
- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other
- e.g., 000 and 001 vs. 0000 and 0011

- Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other
- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other
- e.g., 000 and 001 vs. 0000 and 0011
- Can only detect odd number of bit flips, can't correct errors

▶ e.g., 16 events represented as 0000, 0001, ..., 1111

- ▶ e.g., 16 events represented as 0000, 0001, ..., 1111
- Add 3 bits $t_5 t_6 t_7$ to each code word $s_1 s_2 s_3 s_4$ such that

$$t_5 = s_1 + s_2 + s_3 \pmod{2}$$

$$t_6 = s_2 + s_3 + s_4 \pmod{2}$$

$$t_7 = s_3 + s_4 + s_1 \pmod{2}$$

- e.g., 16 events represented as 0000, 0001, ..., 1111
- Add 3 bits $t_5 t_6 t_7$ to each code word $s_1 s_2 s_3 s_4$ such that

$$t_5 = s_1 + s_2 + s_3 \pmod{2}$$

$$t_6 = s_2 + s_3 + s_4 \pmod{2}$$

$$t_7 = s_3 + s_4 + s_1 \pmod{2}$$

▶ e.g., what do 0000, 0001, ..., 0101, ..., 1111 become?

• Any two code words have a Hamming distance of \geq 3

- Any two code words have a Hamming distance of \geq 3
- 1 bit flip can be detected and corrected

- Any two code words have a Hamming distance of \geq 3
- 1 bit flip can be detected and corrected
- \blacktriangleright \geq 2 bit flips will be corrected to the wrong code word

- Any two code words have a Hamming distance of \geq 3
- 1 bit flip can be detected and corrected
- \blacktriangleright 2 bit flips will be corrected to the wrong code word
- ▶ 2 bit flips can be detected using a global parity bit \implies 8/4

Write the received code word in 3 overlapping circles

- Write the received code word in 3 overlapping circles
- ► Goal: every circle should have parity 0 (i.e., even # 1s)

- Write the received code word in 3 overlapping circles
- ► Goal: every circle should have parity 0 (i.e., even # 1s)
- Check each circle to see if its parity is 0 or 1

- Write the received code word in 3 overlapping circles
- ► Goal: every circle should have parity 0 (i.e., even # 1s)
- Check each circle to see if its parity is 0 or 1
- Is there a single unique bit (s or t) that lies inside all the parity 1 circles but outside all the parity 0 circles?

- Write the received code word in 3 overlapping circles
- ► Goal: every circle should have parity 0 (i.e., even # 1s)
- Check each circle to see if its parity is 0 or 1
- Is there a single unique bit (s or t) that lies inside all the parity 1 circles but outside all the parity 0 circles?
- If so, flipping this bit accounts for the parity violation

Examples of Decoding 7/4 Hamming Codes

e.g., suppose 1000101 was transmitted but a) 1000001, b) 1100101, c) 1010101, d) 1010100 were received?

Examples of Error Probability

e.g., 16 events represented as 0000, 0001, ... 1111, probability of a single bit flip is 1 / 10, what is the error probability?

Examples of Error Probability

e.g., 16 events now represented as 0000000, 0001011, ..., 11111111, now what is the error probability?

For Next Time

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Fourth homework is due on Friday