Reminders

- Check the course website: http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/
- Third homework is due TOMORROW
- IMPORTANT: check you can log into the EdLab in preparation for the fourth homework
Recap
Information Theory

- Probability and information content are inversely related
If events A_1, \ldots, A_n have probabilities $P(A_1), \ldots, P(A_n)$ and partition Ω, the information content $I(A_i)$ of event A_i is

$$I(A_i) = \log_2 \frac{1}{P(A_i)}$$
If events A_1, \ldots, A_n have probabilities $P(A_1), \ldots, P(A_n)$ and partition Ω, the information content $I(A_i)$ of event A_i is

$$I(A_i) = \log_2 \frac{1}{P(A_i)}$$

Intuition: number of (theoretical) equiprobable yes/no questions required to uniquely identify that $x \in A_i$
If events A_1, \ldots, A_n have probabilities $P(A_1), \ldots, P(A_n)$ and partition Ω, the information content $I(A_i)$ of event A_i is

$$I(A_i) = \log_2 \frac{1}{P(A_i)}$$

Intuition: number of (theoretical) equiprobable yes/no questions required to uniquely identify that $x \in A_i$

Additive: $I(A \cap B) = I(A) + I(B \mid A) = I(B) + I(A \mid B)$
Entropy: average information content of a set of n disjoint, mutually exclusive events A_1, \ldots, A_n that partition Ω

$$H(A_1, \ldots, A_n) = \sum_{i=1}^{n} P(A_i) \log_2 \frac{1}{P(A_i)}$$
Entropy: average information content of a set of n disjoint, mutually exclusive events A_1, \ldots, A_n that partition Ω

$$H(A_1, \ldots, A_n) = \sum_{i=1}^{n} P(A_i) \log_2 \frac{1}{P(A_i)}$$

Measure of uncertainty of the entire set of events: maximized when events are equiprobable, e.g., $P(A_1) = P(A_2) = 1/2$
Suppose A_1, \ldots, A_n are encoded using $L(A_1), \ldots, L(A_n)$ bits, the information rate is the average number of bits per event

$$R(A_1, \ldots, A_n) = \sum_{i=1}^{n} P(A_i) L(A_i)$$

Entropy $H(A_1, \ldots, A_n)$ is the best achievable (lowest possible) information rate if events must be uniquely encoded
Suppose A_1, \ldots, A_n are encoded using $L(A_1), \ldots, L(A_n)$ bits, the information rate is the average number of bits per event

$$R(A_1, \ldots, A_n) = \sum_{i=1}^{n} P(A_i) L(A_i)$$

Entropy $H(A_1, \ldots, A_n)$ is the best achievable (lowest possible) information rate if events must be uniquely encoded.
Last Time: Representing Events

- **Fixed length codes**: use same number of bits to encode each event, e.g., \(A_1 = 11, A_2 = 10, A_3 = 01, A_4 = 00 \)

- Optimal for events with equal probabilities

- **Variable length codes**: use different number of bits to encode each event, e.g., \(A_1 = 1, A_2 = 01, A_3 = 001, A_4 = 000 \)

- Optimal for events with unequal probabilities
Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$

Optimal for events with equal probabilities
Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$

Optimal for events with equal probabilities

Variable length codes: use different number of bits to encode each event, e.g., $A_1 = 1$, $A_2 = 01$, $A_3 = 001$, $A_4 = 000$
Fixed length codes: use same number of bits to encode each event, e.g., $A_1 = 11$, $A_2 = 10$, $A_3 = 01$, $A_4 = 00$

Optimal for events with equal probabilities

Variable length codes: use different number of bits to encode each event, e.g., $A_1 = 1$, $A_2 = 01$, $A_3 = 001$, $A_4 = 000$

Optimal for events with unequal probabilities
Compression
Compression

- **Message**: sequence of events, e.g., $A_1 A_1 A_3 A_1 A_2 A_4$
Compression

- **Message**: sequence of events, e.g., $A_1A_1A_3A_1A_2A_4$
- **Goal**: represent messages using as few bits as possible
Compression

- **Message:** sequence of events, e.g., $A_1A_1A_3A_1A_2A_4$
- **Goal:** represent messages using as few bits as possible
- **Compressed messages must be uniquely decodeable**
Compression

- **Message**: sequence of events, e.g., $A_1A_1A_3A_1A_2A_4$
- **Goal**: represent messages using as few bits as possible
- **Compressed messages must be uniquely decodeable**
- **Simplest binary code**: fixed length, k bits to encode 2^k events
Compression

- **Message:** sequence of events, e.g., $A_1 A_1 A_3 A_1 A_2 A_4$
- **Goal:** represent messages using as few bits as possible
- **Compressed messages must be uniquely decodeable**
- **Simplest binary code:** fixed length, k bits to encode 2^k events
- **Variable length code:** short bit strings for probable events
Compression

- **Message:** sequence of events, e.g., $A_1A_1A_3A_1A_2A_4$
- **Goal:** represent messages using as few bits as possible
- **Compressed messages must be uniquely decodeable**
- **Simplest binary code:** fixed length, k bits to encode 2^k events
- **Variable length code:** short bit strings for probable events
- **Compression limit:** determined by entropy
Decompression and Prefix Codes

- Decompressing messages is hard for variable-length codes
Decompression and Prefix Codes

- Decompressing messages is hard for variable-length codes
- e.g., $A_1 = 0$, $A_2 = 00$, $A_3 = 000$, what’s 0000?
Decompression and Prefix Codes

- Decompressing messages is hard for variable-length codes
- e.g., $A_1 = 0, A_2 = 00, A_3 = 000$, what’s 0000?
- e.g., $A_1 = 0, A_2 = 01, A_3 = 011$, what’s 00?
Decompression and Prefix Codes

- Decompressing messages is hard for variable-length codes
- e.g., $A_1 = 0$, $A_2 = 00$, $A_3 = 000$, what’s 0000?
- e.g., $A_1 = 0$, $A_2 = 01$, $A_3 = 011$, what’s 00?
- **Prefix code:** no “code word” is a prefix of any other
Decompression and Prefix Codes

- Decompressing messages is hard for variable-length codes
- e.g., $A_1 = 0$, $A_2 = 00$, $A_3 = 000$, what’s 0000?
- e.g., $A_1 = 0$, $A_2 = 01$, $A_3 = 011$, what’s 00?

- **Prefix code**: no “code word” is a prefix of any other
- e.g., $A_1 = 0$, $A_2 = 10$, $A_3 = 110$, $A_4 = 111$
Consider a binary tree with events A_1, \ldots, A_n as leaves.
Consider a binary tree with events A_1, \ldots, A_n as leaves.

Encode each event A_i as the unique bit string that identifies A_i (i.e., represents the path from the root to A_i).
Consider a binary tree with events A_1, \ldots, A_n as leaves.

Encode each event A_i as the unique bit string that identifies A_i (i.e., represents the path from the root to A_i).

Any code constructed this way will be a prefix code.
Prefix Codes and Binary Trees

- Consider a binary tree with events A_1, \ldots, A_n as leaves.
- Encode each event A_i as the unique bit string that identifies A_i (i.e., represents the path from the root to A_i).
- Any code constructed this way will be a prefix code.
- But not necessarily optimal (information rate \geq entropy).
Optimal Prefix Codes

<table>
<thead>
<tr>
<th>$P(A_i)$</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.24</td>
<td>0.05</td>
<td>0.20</td>
<td>0.47</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Goal: prefix code with information rate = entropy = 1.93
Optimal Prefix Codes

<table>
<thead>
<tr>
<th>$P(A_i)$</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.24</td>
<td>0.05</td>
<td>0.20</td>
<td>0.47</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- Goal: prefix code with information rate $=$ entropy $= 1.93$
- We’ve (kind of) seen this already...
Optimal Prefix Codes

<table>
<thead>
<tr>
<th>$P(A_i)$</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.24</td>
<td>0.05</td>
<td>0.20</td>
<td>0.47</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- Goal: prefix code with information rate = entropy $= 1.93$
- We’ve (kind of) seen this already...
- A balanced binary tree \implies shorter code words
Building Prefix Codes

<table>
<thead>
<tr>
<th>(P(A_i))</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(A_5)</th>
<th>(A_6)</th>
<th>(A_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.24</td>
<td>0.05</td>
<td>0.20</td>
<td>0.47</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

- **Top-down construction**: build the tree from the root down
Building Prefix Codes

<table>
<thead>
<tr>
<th>$P(A_i)$</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.24</td>
<td>0.05</td>
<td>0.20</td>
<td>0.47</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- **Top-down construction**: build the tree from the root down
- Does not necessarily result in an optimal prefix code:

$$H(A_1, \ldots, A_n) \leq R(A_1, \ldots, A_n) \leq H(A_1, \ldots, A_n) + 2$$
Huffman Coding

<table>
<thead>
<tr>
<th>$P(A_i)$</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.24</td>
<td>0.05</td>
<td>0.20</td>
<td>0.47</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- **Bottom-up construction**: build the tree from the leaves up
Huffman Coding

<table>
<thead>
<tr>
<th>$P(A_i)$</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.24</td>
<td>0.05</td>
<td>0.20</td>
<td>0.47</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- **Bottom-up construction**: build the tree from the leaves up
- Upper bound on information rate is better:

$$H(A_1, \ldots, A_n) \leq R(A_1, \ldots, A_n) < H(A_1, \ldots, A_n) + 1$$
Huffman Coding

| | A_1 | A_2 | A_3 | A_4 | A_5 | A_6 | A_7
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(A_i)$</td>
<td>0.01</td>
<td>0.24</td>
<td>0.05</td>
<td>0.20</td>
<td>0.47</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- **Bottom-up construction:** build the tree from the leaves up
- **Upper bound on information rate is better:**
 \[
 H(A_1, \ldots, A_n) \leq R(A_1, \ldots, A_n) < H(A_1, \ldots, A_n) + 1
 \]
- Can prove this is optimal for a prefix code
[Got to here in class...]
Communicating Perfectly
Transmitting Information

- Goal: transmit some message, encoded in binary

- ...
Transmitting Information

- Goal: transmit some message, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)

Probability of a single bit being flipped is p

Error probability: overall probability of there being an undetected error when using some encoding scheme
Transmitting Information

- Goal: transmit some message, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p
Transmitting Information

- Goal: transmit some message, encoded in binary
- Want to make sure the correct message is received even if there are transmission errors (e.g., static, disk failure, ...)
- Probability of a single bit being flipped is p
- Error probability: overall probability of there being an undetected error when using some encoding scheme
Examples of Error Probability

- e.g., 8 events represented as 000, 001, 010, ..., 111, probability of a single bit flip is $1/10$, what is the error probability?
Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are “protected” against errors in transmission
Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are “protected” against errors in transmission
- Error detecting codes vs. error correcting codes
Encoding with Redundancy

- Can use additional bits when encoding events to ensure that they are “protected” against errors in transmission
- Error detecting codes vs. error correcting codes
- **Fundamental trade-off**: want encoding schemes that minimize both the error probability and the information rate
Error-Detecting Codes: Parity Check Codes

- Append a parity bit to each code word such that every code word always contains an even number of ones.

 - e.g., 0000, 0011, 0101, ..., 1100, 1111

 - Can detect error if an odd number of bits get flipped

 - Cannot detect error if an even number of bits get flipped
Error-Detecting Codes: Parity Check Codes

- Append a parity bit to each code word such that every code word always contains an even number of ones.
- e.g., 0000, 0011, 0101, ..., 1100, 1111
Error-Detecting Codes: Parity Check Codes

- Append a parity bit to each code word such that every code word always contains an even number of ones
- e.g., 0000, 0011, 0101, ..., 1100, 1111
- Can detect error if an odd number of bits get flipped
Append a parity bit to each code word such that every code word always contains an even number of ones.

- e.g., 0000, 0011, 0101, ..., 1100, 1111

- Can detect error if an odd number of bits get flipped
- Cannot detect error if an even number of bits get flipped
Examples of Parity Check Codes

- e.g., 8 events represented as 0000, 0011, ..., 1111, probability of a single bit flip is $1/10$, what is the error probability?
Hamming distance: number of positions (bits) in which two binary strings of equal length differ from each other.
Hamming Distance

- **Hamming distance**: number of positions (bits) in which two binary strings of equal length differ from each other.

- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other.

 - e.g., 000 and 001 vs. 0000 and 0011

- Can only detect odd number of bit flips, can't correct errors.
Hamming Distance

- **Hamming distance**: number of positions (bits) in which two binary strings of equal length differ from each other
- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other
- e.g., 000 and 001 vs. 0000 and 0011
- Can only detect odd number of bit flips, can't correct errors
Hamming Distance

- **Hamming distance**: number of positions (bits) in which two binary strings of equal length differ from each other
- Adding a parity bit means that any two code words have a Hamming distance of at least 2 from each other
- e.g., 000 and 001 vs. 0000 and 0011
- Can only detect odd number of bit flips, can’t correct errors
Error-Correcting Codes: 7/4 Hamming Codes

- e.g., 16 events represented as 0000, 0001, ..., 1111

- Add 3 bits t_5, t_6, t_7 to each code word s_1, s_2, s_3 such that

 $t_5 = s_1 + s_2 + s_3 \pmod{2}$

 $t_6 = s_2 + s_3 + s_4 \pmod{2}$

 $t_7 = s_3 + s_4 + s_1 \pmod{2}$

- e.g., what do 0000, 0001, ..., 0101, ..., 1111 become?
Error-Correcting Codes: 7/4 Hamming Codes

- e.g., 16 events represented as 0000, 0001, ..., 1111
- Add 3 bits $t_5 t_6 t_7$ to each code word $s_1 s_2 s_3 s_4$ such that

 \[
 t_5 = s_1 + s_2 + s_3 \pmod{2}
 \]
 \[
 t_6 = s_2 + s_3 + s_4 \pmod{2}
 \]
 \[
 t_7 = s_3 + s_4 + s_1 \pmod{2}
 \]

- e.g., what do 0000, 0001, ..., 0101, ..., 1111 become?
Error-Correcting Codes: 7/4 Hamming Codes

- e.g., 16 events represented as 0000, 0001, …, 1111
- Add 3 bits \(t_5 \ t_6 \ t_7 \) to each code word \(s_1s_2s_3s_4 \) such that

 \[
 t_5 = s_1 + s_2 + s_3 \pmod{2} \\
 t_6 = s_2 + s_3 + s_4 \pmod{2} \\
 t_7 = s_3 + s_4 + s_1 \pmod{2}
 \]

- e.g., what do 0000, 0001, …, 0101, …, 1111 become?
Error-Correcting Codes: 7/4 Hamming Codes

- Any two code words have a Hamming distance of ≥ 3
Error-Correcting Codes: 7/4 Hamming Codes

- Any two code words have a Hamming distance of ≥ 3
- 1 bit flip can be detected and corrected
Error-Correcting Codes: 7/4 Hamming Codes

- Any two code words have a Hamming distance of ≥ 3
- 1 bit flip can be detected and corrected
- ≥ 2 bit flips will be corrected to the wrong code word
Error-Correcting Codes: 7/4 Hamming Codes

- Any two code words have a Hamming distance of ≥ 3
- 1 bit flip can be detected and corrected
- ≥ 2 bit flips will be corrected to the wrong code word
- 2 bit flips can be detected using a global parity bit $\Rightarrow 8/4$
Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even # 1s)
Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even # 1s)
- Check each circle to see if its parity is 0 or 1
Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even # 1s)
- Check each circle to see if its parity is 0 or 1
- Is there a single unique bit (s or t) that lies inside all the parity 1 circles but outside all the parity 0 circles?
Correcting Single-Bit Errors

- Write the received code word in 3 overlapping circles
- Goal: every circle should have parity 0 (i.e., even \# 1s)
- Check each circle to see if its parity is 0 or 1
- Is there a single unique bit (s or t) that lies inside all the parity 1 circles but outside all the parity 0 circles?
- If so, flipping this bit accounts for the parity violation
Examples of Decoding 7/4 Hamming Codes

- e.g., suppose 1000101 was transmitted but a) 1000001, b) 1100101, c) 1010101, d) 1010100 were received?
Examples of Error Probability

- e.g., 16 events represented as 0000, 0001, ..., 1111, probability of a single bit flip is \(\frac{1}{10} \), what is the error probability?
Examples of Error Probability

- e.g., 16 events now represented as 0000000, 0001011, ..., 1111111, now what is the error probability?
For Next Time

- Check the course website: http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/
- Third homework is due TOMORROW
- IMPORTANT: check you can log into the EdLab in preparation for the fourth homework