
CMPSCI 240: “Reasoning Under Uncertainty”
Lecture 10

Prof. Hanna Wallach
wallach@cs.umass.edu

February 23, 2012



Reminders

I Check the course website: http://www.cs.umass.edu/

~wallach/courses/s12/cmpsci240/

I Third homework is due TOMORROW

I IMPORTANT: check you can log into the EdLab in
preparation for the fourth homework

http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/
http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/


Recap



Information Theory

I Probability and information content are inversely related



Last Time: Information Content

I If events A1, . . . ,An have probabilities P(A1), . . . ,P(An) and
partition Ω, the information content I (Ai ) of event Ai is

I (Ai ) = log2
1

P(Ai )

I Intuition: number of (theoretical) equiprobable yes/no
questions required to uniquely identify that x ∈ Ai

I Additive: I (A ∩ B) = I (A) + I (B |A) = I (B) + I (A |B)



Last Time: Information Content

I If events A1, . . . ,An have probabilities P(A1), . . . ,P(An) and
partition Ω, the information content I (Ai ) of event Ai is

I (Ai ) = log2
1

P(Ai )

I Intuition: number of (theoretical) equiprobable yes/no
questions required to uniquely identify that x ∈ Ai

I Additive: I (A ∩ B) = I (A) + I (B |A) = I (B) + I (A |B)



Last Time: Information Content

I If events A1, . . . ,An have probabilities P(A1), . . . ,P(An) and
partition Ω, the information content I (Ai ) of event Ai is

I (Ai ) = log2
1

P(Ai )

I Intuition: number of (theoretical) equiprobable yes/no
questions required to uniquely identify that x ∈ Ai

I Additive: I (A ∩ B) = I (A) + I (B |A) = I (B) + I (A |B)



Last Time: Entropy

I Entropy: average information content of a set of n disjoint,
mutually exclusive events A1, . . . ,An that partition Ω

H(A1, . . . ,An) =
n∑

i=1

P(Ai ) log2
1

P(Ai )

I Measure of uncertainty of the entire set of events: maximized
when events are equiprobable, e.g., P(A1) = P(A2) = 1 / 2



Last Time: Entropy

I Entropy: average information content of a set of n disjoint,
mutually exclusive events A1, . . . ,An that partition Ω

H(A1, . . . ,An) =
n∑

i=1

P(Ai ) log2
1

P(Ai )

I Measure of uncertainty of the entire set of events: maximized
when events are equiprobable, e.g., P(A1) = P(A2) = 1 / 2



Last Time: Information Rate

I Suppose A1, . . . ,An are encoded using L(A1), . . . , L(An) bits,
the information rate is the average number of bits per event

R(A1, . . . ,An) =
n∑

i=1

P(Ai ) L(Ai )

I Entropy H(A1, . . . ,An) is the best achievable (lowest possible)
information rate if events must be uniquely encoded



Last Time: Information Rate

I Suppose A1, . . . ,An are encoded using L(A1), . . . , L(An) bits,
the information rate is the average number of bits per event

R(A1, . . . ,An) =
n∑

i=1

P(Ai ) L(Ai )

I Entropy H(A1, . . . ,An) is the best achievable (lowest possible)
information rate if events must be uniquely encoded



Last Time: Representing Events

I Fixed length codes: use same number of bits to encode each
event, e.g., A1 = 11, A2 = 10, A3 = 01, A4 = 00

I Optimal for events with equal probabilities

I Variable length codes: use different number of bits to encode
each event, e.g., A1 = 1, A2 = 01, A3 = 001, A4 = 000

I Optimal for events with unequal probabilities



Last Time: Representing Events

I Fixed length codes: use same number of bits to encode each
event, e.g., A1 = 11, A2 = 10, A3 = 01, A4 = 00

I Optimal for events with equal probabilities

I Variable length codes: use different number of bits to encode
each event, e.g., A1 = 1, A2 = 01, A3 = 001, A4 = 000

I Optimal for events with unequal probabilities



Last Time: Representing Events

I Fixed length codes: use same number of bits to encode each
event, e.g., A1 = 11, A2 = 10, A3 = 01, A4 = 00

I Optimal for events with equal probabilities

I Variable length codes: use different number of bits to encode
each event, e.g., A1 = 1, A2 = 01, A3 = 001, A4 = 000

I Optimal for events with unequal probabilities



Last Time: Representing Events

I Fixed length codes: use same number of bits to encode each
event, e.g., A1 = 11, A2 = 10, A3 = 01, A4 = 00

I Optimal for events with equal probabilities

I Variable length codes: use different number of bits to encode
each event, e.g., A1 = 1, A2 = 01, A3 = 001, A4 = 000

I Optimal for events with unequal probabilities



Compression



Compression

I Message: sequence of events, e.g., A1A1A3A1A2A4

I Goal: represent messages using as few bits as possible

I Compressed messages must be uniquely decodeable

I Simplest binary code: fixed length, k bits to encode 2k events

I Variable length code: short bit strings for probable events

I Compression limit: determined by entropy



Compression

I Message: sequence of events, e.g., A1A1A3A1A2A4

I Goal: represent messages using as few bits as possible

I Compressed messages must be uniquely decodeable

I Simplest binary code: fixed length, k bits to encode 2k events

I Variable length code: short bit strings for probable events

I Compression limit: determined by entropy



Compression

I Message: sequence of events, e.g., A1A1A3A1A2A4

I Goal: represent messages using as few bits as possible

I Compressed messages must be uniquely decodeable

I Simplest binary code: fixed length, k bits to encode 2k events

I Variable length code: short bit strings for probable events

I Compression limit: determined by entropy



Compression

I Message: sequence of events, e.g., A1A1A3A1A2A4

I Goal: represent messages using as few bits as possible

I Compressed messages must be uniquely decodeable

I Simplest binary code: fixed length, k bits to encode 2k events

I Variable length code: short bit strings for probable events

I Compression limit: determined by entropy



Compression

I Message: sequence of events, e.g., A1A1A3A1A2A4

I Goal: represent messages using as few bits as possible

I Compressed messages must be uniquely decodeable

I Simplest binary code: fixed length, k bits to encode 2k events

I Variable length code: short bit strings for probable events

I Compression limit: determined by entropy



Compression

I Message: sequence of events, e.g., A1A1A3A1A2A4

I Goal: represent messages using as few bits as possible

I Compressed messages must be uniquely decodeable

I Simplest binary code: fixed length, k bits to encode 2k events

I Variable length code: short bit strings for probable events

I Compression limit: determined by entropy



Decompression and Prefix Codes

I Decompressing messages is hard for variable-length codes

I e.g., A1 = 0, A2 = 00, A3 = 000, what’s 0000?

I e.g., A1 = 0, A2 = 01, A3 = 011, what’s 00?

I Prefix code: no “code word” is a prefix of any other

I e.g., A1 = 0, A2 = 10, A3 = 110, A4 = 111



Decompression and Prefix Codes

I Decompressing messages is hard for variable-length codes

I e.g., A1 = 0, A2 = 00, A3 = 000, what’s 0000?

I e.g., A1 = 0, A2 = 01, A3 = 011, what’s 00?

I Prefix code: no “code word” is a prefix of any other

I e.g., A1 = 0, A2 = 10, A3 = 110, A4 = 111



Decompression and Prefix Codes

I Decompressing messages is hard for variable-length codes

I e.g., A1 = 0, A2 = 00, A3 = 000, what’s 0000?

I e.g., A1 = 0, A2 = 01, A3 = 011, what’s 00?

I Prefix code: no “code word” is a prefix of any other

I e.g., A1 = 0, A2 = 10, A3 = 110, A4 = 111



Decompression and Prefix Codes

I Decompressing messages is hard for variable-length codes

I e.g., A1 = 0, A2 = 00, A3 = 000, what’s 0000?

I e.g., A1 = 0, A2 = 01, A3 = 011, what’s 00?

I Prefix code: no “code word” is a prefix of any other

I e.g., A1 = 0, A2 = 10, A3 = 110, A4 = 111



Decompression and Prefix Codes

I Decompressing messages is hard for variable-length codes

I e.g., A1 = 0, A2 = 00, A3 = 000, what’s 0000?

I e.g., A1 = 0, A2 = 01, A3 = 011, what’s 00?

I Prefix code: no “code word” is a prefix of any other

I e.g., A1 = 0, A2 = 10, A3 = 110, A4 = 111



Prefix Codes and Binary Trees

I Consider a binary tree with events A1, . . . ,An as leaves

I Encode each event Ai as the unique bit string that identifies
Ai (i.e., represents the path from the root to Ai )

I Any code constructed this way will be a prefix code

I But not necessarily optimal (information rate ≥ entropy)



Prefix Codes and Binary Trees

I Consider a binary tree with events A1, . . . ,An as leaves

I Encode each event Ai as the unique bit string that identifies
Ai (i.e., represents the path from the root to Ai )

I Any code constructed this way will be a prefix code

I But not necessarily optimal (information rate ≥ entropy)



Prefix Codes and Binary Trees

I Consider a binary tree with events A1, . . . ,An as leaves

I Encode each event Ai as the unique bit string that identifies
Ai (i.e., represents the path from the root to Ai )

I Any code constructed this way will be a prefix code

I But not necessarily optimal (information rate ≥ entropy)



Prefix Codes and Binary Trees

I Consider a binary tree with events A1, . . . ,An as leaves

I Encode each event Ai as the unique bit string that identifies
Ai (i.e., represents the path from the root to Ai )

I Any code constructed this way will be a prefix code

I But not necessarily optimal (information rate ≥ entropy)



Optimal Prefix Codes

A1 A2 A3 A4 A5 A6 A7

P(Ai ) 0.01 0.24 0.05 0.20 0.47 0.01 0.02

I Goal: prefix code with information rate = entropy = 1.93

I We’ve (kind of) seen this already...

I A balanced binary tree =⇒ shorter code words



Optimal Prefix Codes

A1 A2 A3 A4 A5 A6 A7

P(Ai ) 0.01 0.24 0.05 0.20 0.47 0.01 0.02

I Goal: prefix code with information rate = entropy = 1.93

I We’ve (kind of) seen this already...

I A balanced binary tree =⇒ shorter code words



Optimal Prefix Codes

A1 A2 A3 A4 A5 A6 A7

P(Ai ) 0.01 0.24 0.05 0.20 0.47 0.01 0.02

I Goal: prefix code with information rate = entropy = 1.93

I We’ve (kind of) seen this already...

I A balanced binary tree =⇒ shorter code words



Building Prefix Codes

A1 A2 A3 A4 A5 A6 A7

P(Ai ) 0.01 0.24 0.05 0.20 0.47 0.01 0.02

I Top-down construction: build the tree from the root down

I Does not nessarily result in an optimal prefix code:

H(A1, . . . ,An) ≤ R(A1, . . . ,An) ≤ H(A1, . . . ,An) + 2



Building Prefix Codes

A1 A2 A3 A4 A5 A6 A7

P(Ai ) 0.01 0.24 0.05 0.20 0.47 0.01 0.02

I Top-down construction: build the tree from the root down

I Does not nessarily result in an optimal prefix code:

H(A1, . . . ,An) ≤ R(A1, . . . ,An) ≤ H(A1, . . . ,An) + 2



Huffman Coding

A1 A2 A3 A4 A5 A6 A7

P(Ai ) 0.01 0.24 0.05 0.20 0.47 0.01 0.02

I Bottom-up construction: build the tree from the leaves up

I Upper bound on information rate is better:

H(A1, . . . ,An) ≤ R(A1, . . . ,An) < H(A1, . . . ,An) + 1

I Can prove this is optimal for a prefix code



Huffman Coding

A1 A2 A3 A4 A5 A6 A7

P(Ai ) 0.01 0.24 0.05 0.20 0.47 0.01 0.02

I Bottom-up construction: build the tree from the leaves up

I Upper bound on information rate is better:

H(A1, . . . ,An) ≤ R(A1, . . . ,An) < H(A1, . . . ,An) + 1

I Can prove this is optimal for a prefix code



Huffman Coding

A1 A2 A3 A4 A5 A6 A7

P(Ai ) 0.01 0.24 0.05 0.20 0.47 0.01 0.02

I Bottom-up construction: build the tree from the leaves up

I Upper bound on information rate is better:

H(A1, . . . ,An) ≤ R(A1, . . . ,An) < H(A1, . . . ,An) + 1

I Can prove this is optimal for a prefix code



[Got to here in class...]



Communicating Perfectly



Transmitting Information

I Goal: transmit some message, encoded in binary

I Want to make sure the correct message is received even if
there are transmission errors (e.g., static, disk failure, ...)

I Probability of a single bit being flipped is p

I Error probability: overall probability of there being an
undetected error when using some encoding scheme



Transmitting Information

I Goal: transmit some message, encoded in binary

I Want to make sure the correct message is received even if
there are transmission errors (e.g., static, disk failure, ...)

I Probability of a single bit being flipped is p

I Error probability: overall probability of there being an
undetected error when using some encoding scheme



Transmitting Information

I Goal: transmit some message, encoded in binary

I Want to make sure the correct message is received even if
there are transmission errors (e.g., static, disk failure, ...)

I Probability of a single bit being flipped is p

I Error probability: overall probability of there being an
undetected error when using some encoding scheme



Transmitting Information

I Goal: transmit some message, encoded in binary

I Want to make sure the correct message is received even if
there are transmission errors (e.g., static, disk failure, ...)

I Probability of a single bit being flipped is p

I Error probability: overall probability of there being an
undetected error when using some encoding scheme



Examples of Error Probability

I e.g., 8 events represented as 000, 001, 010, . . . 111, probability
of a single bit flip is 1 / 10, what is the error probability?



Encoding with Redundancy

I Can use additional bits when encoding events to ensure that
they are “protected” against errors in transmission

I Error detecting codes vs. error correcting codes

I Fundamental trade-off: want encoding schemes that minimize
both the error probability and the information rate



Encoding with Redundancy

I Can use additional bits when encoding events to ensure that
they are “protected” against errors in transmission

I Error detecting codes vs. error correcting codes

I Fundamental trade-off: want encoding schemes that minimize
both the error probability and the information rate



Encoding with Redundancy

I Can use additional bits when encoding events to ensure that
they are “protected” against errors in transmission

I Error detecting codes vs. error correcting codes

I Fundamental trade-off: want encoding schemes that minimize
both the error probability and the information rate



Error-Detecting Codes: Parity Check Codes

I Append a parity bit to each code word such that every code
word always contains an even number of ones

I e.g., 0000, 0011, 0101, . . . , 1100, 1111

I Can detect error if an odd number of bits get flipped

I Cannot detect error if an even number of bits get flipped



Error-Detecting Codes: Parity Check Codes

I Append a parity bit to each code word such that every code
word always contains an even number of ones

I e.g., 0000, 0011, 0101, . . . , 1100, 1111

I Can detect error if an odd number of bits get flipped

I Cannot detect error if an even number of bits get flipped



Error-Detecting Codes: Parity Check Codes

I Append a parity bit to each code word such that every code
word always contains an even number of ones

I e.g., 0000, 0011, 0101, . . . , 1100, 1111

I Can detect error if an odd number of bits get flipped

I Cannot detect error if an even number of bits get flipped



Error-Detecting Codes: Parity Check Codes

I Append a parity bit to each code word such that every code
word always contains an even number of ones

I e.g., 0000, 0011, 0101, . . . , 1100, 1111

I Can detect error if an odd number of bits get flipped

I Cannot detect error if an even number of bits get flipped



Examples of Parity Check Codes

I e.g., 8 events represented as 0000, 0011, . . . , 1111, probability
of a single bit flip is 1 / 10, what is the error probability?



Hamming Distance

I Hamming distance: number of positions (bits) in which two
binary strings of equal length differ from each other

I Adding a parity bit means that any two code words have a
Hamming distance of at least 2 from each other

I e.g., 000 and 001 vs. 0000 and 0011

I Can only detect odd number of bit flips, can’t correct errors



Hamming Distance

I Hamming distance: number of positions (bits) in which two
binary strings of equal length differ from each other

I Adding a parity bit means that any two code words have a
Hamming distance of at least 2 from each other

I e.g., 000 and 001 vs. 0000 and 0011

I Can only detect odd number of bit flips, can’t correct errors



Hamming Distance

I Hamming distance: number of positions (bits) in which two
binary strings of equal length differ from each other

I Adding a parity bit means that any two code words have a
Hamming distance of at least 2 from each other

I e.g., 000 and 001 vs. 0000 and 0011

I Can only detect odd number of bit flips, can’t correct errors



Hamming Distance

I Hamming distance: number of positions (bits) in which two
binary strings of equal length differ from each other

I Adding a parity bit means that any two code words have a
Hamming distance of at least 2 from each other

I e.g., 000 and 001 vs. 0000 and 0011

I Can only detect odd number of bit flips, can’t correct errors



Error-Correcting Codes: 7/4 Hamming Codes

I e.g., 16 events represented as 0000, 0001, . . . , 1111

I Add 3 bits t5t6t7 to each code word s1s2s3s4 such that

t5 = s1 + s2 + s3 (mod 2)

t6 = s2 + s3 + s4 (mod 2)

t7 = s3 + s4 + s1 (mod 2)

I e.g., what do 0000, 0001, . . . , 0101, . . . , 1111 become?



Error-Correcting Codes: 7/4 Hamming Codes

I e.g., 16 events represented as 0000, 0001, . . . , 1111

I Add 3 bits t5t6t7 to each code word s1s2s3s4 such that

t5 = s1 + s2 + s3 (mod 2)

t6 = s2 + s3 + s4 (mod 2)

t7 = s3 + s4 + s1 (mod 2)

I e.g., what do 0000, 0001, . . . , 0101, . . . , 1111 become?



Error-Correcting Codes: 7/4 Hamming Codes

I e.g., 16 events represented as 0000, 0001, . . . , 1111

I Add 3 bits t5t6t7 to each code word s1s2s3s4 such that

t5 = s1 + s2 + s3 (mod 2)

t6 = s2 + s3 + s4 (mod 2)

t7 = s3 + s4 + s1 (mod 2)

I e.g., what do 0000, 0001, . . . , 0101, . . . , 1111 become?



Error-Correcting Codes: 7/4 Hamming Codes

I Any two code words have a Hamming distance of ≥ 3

I 1 bit flip can be detected and corrected

I ≥ 2 bit flips will be corrected to the wrong code word

I 2 bit flips can be detected using a global parity bit =⇒ 8/4



Error-Correcting Codes: 7/4 Hamming Codes

I Any two code words have a Hamming distance of ≥ 3

I 1 bit flip can be detected and corrected

I ≥ 2 bit flips will be corrected to the wrong code word

I 2 bit flips can be detected using a global parity bit =⇒ 8/4



Error-Correcting Codes: 7/4 Hamming Codes

I Any two code words have a Hamming distance of ≥ 3

I 1 bit flip can be detected and corrected

I ≥ 2 bit flips will be corrected to the wrong code word

I 2 bit flips can be detected using a global parity bit =⇒ 8/4



Error-Correcting Codes: 7/4 Hamming Codes

I Any two code words have a Hamming distance of ≥ 3

I 1 bit flip can be detected and corrected

I ≥ 2 bit flips will be corrected to the wrong code word

I 2 bit flips can be detected using a global parity bit =⇒ 8/4



Correcting Single-Bit Errors

I Write the received code word in 3 overlapping circles

I Goal: every circle should have parity 0 (i.e., even # 1s)

I Check each circle to see if its parity is 0 or 1

I Is there a single unique bit (s or t) that lies inside all the
parity 1 circles but outside all the parity 0 circles?

I If so, flipping this bit accounts for the parity violation



Correcting Single-Bit Errors

I Write the received code word in 3 overlapping circles

I Goal: every circle should have parity 0 (i.e., even # 1s)

I Check each circle to see if its parity is 0 or 1

I Is there a single unique bit (s or t) that lies inside all the
parity 1 circles but outside all the parity 0 circles?

I If so, flipping this bit accounts for the parity violation



Correcting Single-Bit Errors

I Write the received code word in 3 overlapping circles

I Goal: every circle should have parity 0 (i.e., even # 1s)

I Check each circle to see if its parity is 0 or 1

I Is there a single unique bit (s or t) that lies inside all the
parity 1 circles but outside all the parity 0 circles?

I If so, flipping this bit accounts for the parity violation



Correcting Single-Bit Errors

I Write the received code word in 3 overlapping circles

I Goal: every circle should have parity 0 (i.e., even # 1s)

I Check each circle to see if its parity is 0 or 1

I Is there a single unique bit (s or t) that lies inside all the
parity 1 circles but outside all the parity 0 circles?

I If so, flipping this bit accounts for the parity violation



Correcting Single-Bit Errors

I Write the received code word in 3 overlapping circles

I Goal: every circle should have parity 0 (i.e., even # 1s)

I Check each circle to see if its parity is 0 or 1

I Is there a single unique bit (s or t) that lies inside all the
parity 1 circles but outside all the parity 0 circles?

I If so, flipping this bit accounts for the parity violation



Examples of Decoding 7/4 Hamming Codes

I e.g., suppose 1000101 was transmitted but a) 1000001, b)
1100101, c) 1010101, d) 1010100 were received?



Examples of Error Probability

I e.g., 16 events represented as 0000, 0001, . . . 1111, probability
of a single bit flip is 1 / 10, what is the error probability?



Examples of Error Probability

I e.g., 16 events now represented as 0000000, 0001011, . . . ,
1111111, now what is the error probability?



For Next Time

I Check the course website: http://www.cs.umass.edu/

~wallach/courses/s12/cmpsci240/

I Third homework is due TOMORROW

I IMPORTANT: check you can log into the EdLab in
preparation for the fourth homework

http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/
http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/

