
CMPSCI 240

Reasoning Under Uncertainty

Homework 7

Prof. Hanna Wallach

Assigned: April 13, 2012
Due: April 20, 2012

Overview

The goal of this project is to implement a Markov chain text generator. The
code prompts the user for three inputs: (1) the number of tokens (either
words or letters) associated with each state, (2) the kind of tokens associ-
ated with each state (words or letters), (3) a file containing training data.
The code will construct a Markov chain over either words or letters (as
specified) using the training data and then generate some new text. You
will be writing the code to construct the Markov chain (i.e., states, transi-
tion probabilities, etc.) as well as some other methods to help you do this.

Files

The Java files needed for this assignment are on EdLab in the
/courses/cs200/cs240/cs240/hw7/skeleton/ directory.

• MarkovChain.java: this is the starting point for the program. This
file is the only file you will need to edit for this homework.

• MCState.java: An MCState object represents an individual state
in a Markov chain. It contains a list of tokens (words or letters). You

1



should familiarize yourself with this code because you’ll need to call
some of these methods, but you don’t need to change anything here.

• TransitionCounts.java: This is part of the data structure used
to store how many transitions we’ve seen between pairs of states.

• TextFileTokenizers.java: Don’t worry about this file.

The code

MarkovChain.java will run straight out of the box (but won’t do any-
thing intelligent). You need to complete the following methods:

• train(...): trains a text generator from a stream of tokens.

• addTrainingExample(...): updates the generator.

• getSmoothedProbability(state1, state2): returns the prob-
ability that state1 will transition to state2. Use ”smoothing”.

• generateText(...) generate random text using the Markov chain.

Data structures

The only not-completely-intuitive data structure in this program is the one
we use to store the transitions for the Markov chain. You will not store the
transition probabilities directly; you will only keep track of the frequencies
of the transitions observed while examining the token stream. Any time
you need a transition probability, you will compute it from these stored
frequencies (this is what getSmoothedProbability(...) will do).

For every state you need in the Markov chain, you must create a corre-
sponding TransitionCounts object. All of these TransitionCounts
objects should be stored in a hash table called transitions (this vari-

2



able is already defined in the code). If you need to do anything relating to
manipulating transitions (such as adding a new transition, counting tran-
sitions, etc.) it all starts with this transitions hash table.

A TransitionCounts object is also a hash table. For any state S, the
TransitionCounts hash table for S stores the frequencies for any transi-
tion from S to state T . The TransitionCounts table does this by storing
a mapping from T to how many times we’ve seen the transition S → T .

In other words, we have a hash table which stores other hash tables. As an
example, to retrieve the number of times we’ve seen the transition S → T ,
we would need to retrieve S’s TransitionCounts object from transitions,
and then retrieve the integer corresponding to T from that table.

Testing your code

There are various text files in the data directory that you can use to test
your program. We will post sample output for some of these text files.

There is also a line in the main()method in MarkovChain.java that will
print the transition probability matrix. It is commented out (because the
matrices can get really big) but you may uncomment it to see the matrix.

Turning in the program

You should upload your program to your account on the EdLab: create
a subdirectory called hw7 inside your cs240 directory and upload your
MarkovChain.java file into it; that’s the only file necessary.

3


