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ABSTRACT
The popularity of online social networks (OSNs) has given
rise to a number of measurements studies that provide a first
step towards their understanding. So far, such studies have
been based either on complete data sets provided directly by
the OSN itself or on Breadth-First-Search (BFS) crawling of
the social graph, which does not guarantee good statistical
properties of the collected sample. In this paper, we crawl
the publicly available social graph and present the first unbi-
ased sampling of Facebook (FB) users using a Metropolis-
Hastings random walk with multiple chains. We study the
convergence properties of the walk and demonstrate the uni-
formity of the collected sample with respect to multiple met-
rics of interest. We provide a comparison of our crawl-
ing technique to baseline algorithms, namely BFS and sim-
ple random walk, as well as to the “ground truth” obtained
through truly uniform sampling of userIDs. Our contribu-
tions lie both in the measurement methodology and in the
collected sample. With regards to the methodology, our mea-
surement technique (i) applies and combines known results
from random walk sampling specifically in the OSN con-
text and (ii) addresses system implementation aspects that
have made the measurement of Facebook challenging so far.
With respect to the collected sample: (i) it is the first repre-
sentative sample of FB users and we plan to make it publicly
available; (ii) we perform a characterization of several key
properties of the data set, and find that some of them are sub-
stantially different from what was previously believed based
on non-representative OSN samples.

1. INTRODUCTION
In recent years, the popularity of online social networks

(OSNs) is continuously increasing: in May 2009, the to-
tal number of users in the top five OSNs combined (Mys-
pace, Facebook, hi5, Friendster and Orkut) was 791M peo-
ple. Facebook (FB) is one of the most important OSNs to-
day. Indeed, it is the first OSN in terms of the number of
active users (at least 200M [1]) and the first in terms of web
visitors according to Comscore [4] (222M unique worldwide
Internet users monthly), with more than half active FB users
returning daily. It is also the fourth website on the Internet,
according to Alexa’s traffic rank in May 2009. In addition to

its popularity, Facebook is also rich in functionality thanks
to its open platform to third-party application developers.
Clearly, OSNs in general and Facebook in particular have
become an important phenomenon on the Internet, which is
worth studying.

This success has generated interest within the networking
community and has given rise to a number of measurements
and characterization studies, which provide a first step to-
wards the understanding of OSNs. Some of the studies are
based on complete datasets provided by the OSN companies,
such as Cyworld in [2]; or on complete datasets of specific
networks within an OSN, typically university networks such
as the Harvard [18] and Caltech [26] networks in Facebook.
However, the complete dataset is typically not available to
researchers, as most OSNs, including Facebook, are unwill-
ing to share their company’s data. In practice, a relatively
small but representative sample may be a sufficient input for
studies of OSN properties themselves or for algorithms that
use OSN information to improve systems design. Therefore,
it is important to develop techniques for obtaining small but
representative OSN samples. A number of studies already
exist that crawl social graphs, typically using BFS-type of
graph traversal techniques, such as [2,22,29].

Our goal in this paper is to obtain arepresentative sample
of Facebook users by crawling the social graph. We make
the following assumptions in our problem statement: (i) we
are interested only in the publicly declared lists of friends,
which, under default privacy settings, are available to any
logged-in user; (ii) we are not interested in isolated users,
i.e.,users without any declared friends; (iii) we also assume
that the FB graph is static, which is valid if the FB character-
istics change much slower than the duration of our crawl. To
collect our sample, we crawl the Facebook’s web front-end,
which can be challenging in practice.1 Beyond the imple-

1Measuring the entire Facebook is not a trivial task. Facebook has
more than 200M users, each encoded by a 4B=32 bits long userID.
A FB user has on average 100 friends which requires fetching on
average an HTML page of 220KBytes to retrieve her friend list.
Therefore, the raw topological data alone, without any nodeat-
tributes, amounts to200M × 100 × 32bit ≃ 80GB. More im-
portantly, the crawling overhead is tremendous: in order tocollect
80GB, one would have to download about200M × 220KB =

44TB of HTML data.
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mentation details, and more importantly, we are interested
in designing the crawling in such a way that we collect a
uniform sample of Facebook users, which is therefore repre-
sentative of all FB users and appropriate for further statistical
analysis.

In terms of methodology, we use multiple independent
Metropolis-Hastings random walks (MHRW) and we per-
form formal convergence diagnostics. Our approach com-
bines and applies known techniques from the Markov Chain
Monte Carlo (MCMC) literature [7], for the first time, in the
Facebook context. Parts of these techniques have been used
recently in our community, although with some methodolog-
ical differences (i.e., without the multiple chains or the for-
mal convergence diagnostics) and in different context (for
P2P networks [27] and Twitter [12], but not for Facebook);
for a detailed comparison please see Section 2. We compare
our sampling methodology to popular alternatives, namely
Breadth-First-Search (BFS) and simple random walk (RW),
and we show that their results are substantially biased com-
pared to ours. We also compare our sampling technique to
the “ground truth”,i.e.,a truly uniform sample of Facebook
userIDs, randomly selected from the 32-bit ID space; we find
that our results agree perfectly with the ground truth, which
confirms the validity of our approach. We note, however,
that such ground truth is in general unavailable or inefficient
to obtain, as discussed in Section 3.3; in contrast, crawling
friendship relations is a fundamental primitive availablein
OSNs and, we believe, the right building block for design-
ing sampling techniques for OSNs. Therefore, we believe
that out proposed approach is applicable to any OSN.

In terms of results, we obtain the first provably represen-
tative sample of Facebook users and we thoroughly demon-
strate its good statistical properties. We plan to properly
anonymize and make it publicly available. We also char-
acterize some key properties of our sample, namely the de-
gree distribution, assortativity, clustering and privacyfea-
tures. We find that some of these properties are substantially
different from what was previously believed based on biased
sampling methods, such as BFS, even with an order of mag-
nitude more samples than our technique.E.g., we demon-
strate that the degree distribution is clearlynot a power-law
distribution.

The structure of the paper is as follows. Section 2 dis-
cusses related work. Section 3 describes our sampling method-
ology, convergencediagnostics, and the alternative algorithms
used as baselines for comparison. Section 4 describes the
data collection process and summarizes the data set. Sec-
tion 5 evaluates our methodology in terms of (i) convergence
of various node properties and (ii) uniformity of the obtained
sample as compared to alternative techniques as well as to
the ground truth. Section 6 provides a characterization of
some key Facebook properties, based on our representative
sample, including topological properties of the social graph
and user privacy features. Section 7 concludes the paper.

2. RELATED WORK
Broadly speaking, there are two types of work most closely

related to this paper: (i) crawlingtechniques, focusing on the
quality of the sampling technique itself and (ii)characteri-
zation studies, focusing on the properties of online social
networks. These two categories are not necessarily disjoint.

First, in terms of sampling through crawling techniques,
these can be roughly classified into BFS-based and random
walks. Incomplete BFS sampling and its variants, such as
snowball [28], are known to result in bias towards high de-
gree nodes [16] in various artificial and real world topolo-
gies; we also confirmed this in the context of Facebook. De-
spite this well-known fact, BFS is still widely used for mea-
suring OSNs,e.g.,in [22,29] to mention a few examples; in
order to remove the known bias, effort is usually put on com-
pleting the BFS,i.e., on collecting all or most of the nodes
in the graph. Interestingly, in our study we saw that the size
of the sample does not in itself guarantee good properties.2

It is also worth noting that BFS and its variants lead to sam-
ples that not only are biased but also do not have provable
statistical properties.

Random walks may also lead to bias, but the stationary
distribution is well-known and one could correct for it after
the fact. Despite the possible bias, simple random walks
have often been used in practice to achieve near-uniform
sampling of P2P networks [10] and the web [11]. Gkant-
sidis et al. [10] simulate various P2P topologies and show
that random walks outperform flooding (BFS) with regards
to searching for two cases of practical interest. They also
argue that random walks simulate uniform sampling well
with a comparable number of samples. In [11], a random
walk with jumps is used to achieve near-uniform sampling of
URLs in the WWW. Their setting is different since the URL
graph is directed and random jumps are needed to avoid en-
trapment in a region of the web. Leskovec et al. in [17] ex-
plore several sampling methods and compare them in terms
of various graph metrics; their evaluations in static and dy-
namic graphs show that random walks perform the best.

The closest to our paper is the work by Stutzbach et al.
in [27]: they use a Metropolized Random Walk with Back-
tracking (MRWB) to select a representative sample of peers
in a P2P network and demonstrate its effectiveness through
simulations over artificially generated graphs as well as with
measurements of the Gnutella network. They also address
the issue of sampling dynamic graphs, which is out of the
scope here. Our work is different in two ways. In terms
of methodology: (i) we use thebasicMetropolis Random
walk (ii) with multiple parallel chains and (iii) we exten-
sively evaluate theconvergenceusing several node proper-
ties and formal diagnostics. In terms of application, we ap-

2E.g., We will see later that the union of all our datasets include
∼171M unique users,i.e.,a large portion of the Facebook popula-
tion. Despite the large size, this aggregate dataset turns out to be
biased and leads to wrong statistics. In contrast, our sample con-
sists of∼1M nodes but is representative.
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ply our technique toonline social, instead of peer-to-peer,
networks, and we study characteristics specific to that con-
text (e.g.,properties of egonets, the node degree, which we
find not to follow a power-law, etc. We are also fortunate
to be able to obtain a true uniform sample, which can serve
asground truthto validate our crawling technique. Finally
in [12], Krishnamurthy et al. ran a single Metropolis Ran-
dom Walk, inspired by [27], on Twitter as a way to verify
the lack of bias in their main crawl used throughout the pa-
per; the metropolis algorithm was not the main focus of their
paper.

Second, in terms of studies that measure and character-
ize pure online social networks, other than Facebook, there
have been several papers, including [2,3,21,22]. Ahn et. al.
in [2] analyze three online social networks; one complete so-
cial graph of Cyworld obtained from the Cyworld provider,
and two small samples from Orkut and MySpace crawled
with BFS. Interestingly, in our MHRW sample we observe
a multi-scaling behavior in the degree distribution, similarly
with the complete Cyworld dataset. In contrast, the crawled
datasets from Orkut and MySpace in the same paper were
reported to have simple scaling behavior. We believe that
the discrepancy is due to the bias of the BFS-sampling they
used. In [22] and [21] Mislove et al. studied the properties
of the social graph in four popular OSNs: Flickr, LiveJour-
nal, Orkut, and YouTube. Their approach was to collect the
large Weakly Connected Component, also using BFS; their
study concludes that OSNs are structurally different from
other complex networks.

The work by Wilson et al. [29] is closely related to our
study as it also studies Facebook. They collect and analyze
social graphs and user interaction graphs in Facebook be-
tween March and May 2008. In terms of methodology, their
approach differs from previous work in that they use what
we call here a Region-Constrained BFS. They exhaustively
collect all “open” user profiles and their list of friends in
the 22 largest regional networks (out of the 507 available).
First, such Region-Constrained BFS might be appropriate to
study particular regions, but it does not provide any general
Facebook-wide information, which is the goal of our study.
Second, it seems that the percentage of users in the social
graph retrieved in [29] is 30%-60% less than the maximum
possible in each network.3 In terms of results, the main con-
clusion in [29] is that the interaction graph should be pre-
ferred over social graphs in the analysis of online social net-
works, since it exhibits more pronounced small-world clus-
tering. In our work, we collect a representative sample of
the social graph. This sample can also allow us to fetch
a representative sample of user profiles Facebook-wide in

3More specifically, we believe that, for the collection of thesocial
graph, their BFS crawler does not follow users that have their “view
profile” privacy setting closed and “view friends“ privacy setting
open. We infer that by comparing the discrepancy in the percentage
of users for those settings as reported in a Facebook privacystudy
conducted during the same time in [13]i.e., in networks New York,
London, Australia, Turkey.

the future. In terms of findings, some noteworthy differ-
ences from [29] are that we find larger values of the degree-
dependent clustering coefficient as well as a higher assorta-
tivity coefficient.

Other works that have measured properties of Facebook
include [13] and [9]. In [13] the authors examine the usage
of privacy settings in Myspace and Facebook, and the po-
tential privacy leakage in OSNs. Compared to that work, we
have only one common privacy attribute, ”View friends“, for
which we observe similar results using our unbiased sample.
But we also have additional privacy settings and a view of
the social graph, which allows us to analyze user proper-
ties conditioned on their privacy awareness. In our previous
work in [9], we characterized the popularity and user reach
of Facebook applications. Finally, there are also two com-
plete and publicly available datasets corresponding to two
university networks from Facebook, namely Harvard [18]
and Caltech [26]. In contrast, we collect a sample of the
global Facebook social graph.

Finally, other recent works on OSNs include [14] by Ku-
mar et al., which studied the structure and evolution of Flickr
and Yahoo! 360, provided by their corresponding operators,
and discovered a giant well-connected core in both of them.
Liben-Nowellet al.[19] studied the LiveJournal online com-
munity and showed a strong relationship between friendship
and geography in social networks. Girvan et al. [8] con-
sidered the property of community structure and proposed a
method to detect such a property in OSNs.

3. SAMPLING METHODOLOGY
Facebook can be modeled as an undirected graphG =

(V, E), whereV is a set of nodes (Facebook users) andE is
a set of edges (Facebook friendship relationships). Letkv be
the degree of nodev. We assume the following in our prob-
lem statement: (i) we are interested only in the publicly de-
clared lists of friends, which, under default privacy settings,
are available to any logged-in user; (ii) we are not interested
in isolated users,i.e.,users without any declared friends; (iii)
we also assume that the FB graph is static, which is valid if
the FB characteristics change much slower than the duration
of our crawl (a few days).

The crawling of the social graph starts from an initial node
and proceeds iteratively. In every operation, we visit a node
and discover all its neighbors. There are many ways, de-
pending on the particular sampling method, in which we can
proceed. In this section, we first describe sampling methods
commonly used in previous measurements of online social
networks and are known to potentially introduce a signifi-
cant bias to the results. Then we propose to use a technique
that is provably asymptotically unbiased.

3.1 Previous sampling methods

3.1.1 Breadth First Search (BFS)

BFS is a classic graph traversal algorithm which starts
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from a seed node and progressively explores neighboring
nodes. At each new iteration the earliest explored but not-
yet-visited node is selected next. As this method discovers
all nodes within some distance from the starting point, an
incomplete BFS is likely to densely cover only some spe-
cific region of the graph. BFS is known to be biased towards
high degree nodes [15, 23] and no statistical properties can
be proven for it. Nevertheless, BFS-based crawling and its
variants, such as snowball, are widely used techniques for
network measurements.

3.1.2 Random Walk (RW)

Another classic sampling technique is the classic random
walk [20]. In this case, the next-hop nodev is chosen uni-
formly at random among the neighbors of the current nodeu.
Therefore, the probability of moving fromu to v is

P RW

u,w =

{

1
ku

if w is a neighbor ofu,
0 otherwise.

Random walk has been deeply studied;e.g.,see [20] for an
excellent survey. It is simple and there are analytical results
on its stationary distribution and convergence time. Unfor-
tunately, it is also inherently biased. Indeed, in a connected
graph, the probability of being at the particular nodeu con-
verges with time to:

πRW

u =
ku

2 · |E|

which is the stationary distribution of the random walk.E.g.,
a node with twice the degree will be visited by RW two
times more often. Moreover, we show later that many other
node properties in OSNs are correlated with the node degree;
these include, for example, the privacy settings, clustering
coefficient, network membership, or even the 32 bit user ID.
As a result of this correlation, all these metrics are inherently
badly estimated by RW sampling.

3.2 Our sampling method
Our goal is to eliminate the biases of methods mentioned

above andobtain a uniformly distributed random sample of
nodesin Facebook. We can achieve a uniform stationary
distribution by appropriately modifying the transition prob-
abilities of the random walk, as follows.

3.2.1 Metropolis-Hastings Random Walk (MHRW)

The Metropolis-Hastings algorithm is a general Markov
Chain Monte Carlo (MCMC) technique [7] for sampling from
a probability distributionµ that is difficult to sample from
directly. In our case, by performing the classic RW we can
easily sample nodes from the non-uniform distributionπRW ,
whereπRW

u ∼ ku. However, we would like to sample nodes
from the uniform distributionµ, with µu = 1

|V | . This can be

achieved by the following transition matrix:

P MH

u,w =







1
ku
·min(1, ku

kw
) if w is a neighbor ofu,

1−
∑

y 6=u P MH

u,y if w = u,
0 otherwise.

It can be easily shown that the resulting stationary distri-
bution of P MH

u,w is πMH

u = 1
|V | , which is exactly the uni-

form distribution we are looking for. The transition matrix
P MH

u,w implies the following sampling procedure that we call
Metropolis-Hastings Random Walk (MHRW):

u← initial node.
while stopping criterion not metdo

Select nodew uniformly at random from neighbors ofu.
Generate uniformly at random a number0≤p≤1.
if p ≤ ku

kw
then

u← w.
else

Stay atu
end if

end while
In other words, in every iteration of MHRW, at the cur-

rent nodeu we randomly select a neighborw and move there
with probabilitymin(1, ku

kw
). We always accept the move to-

wards a node of smaller degree, and reject some of the moves
towards higher degree nodes. As a result, we eliminate the
bias of RW towards high degree nodes.

3.2.2 Multiple Parallel Walks

Multiple parallel walks are used in the MCMC literature
[7] to improve convergence. Intuitively, if we only have one
walk, we might run into a scenario where it is trapped in a
certain region while exploring the graph and that may lead
to erroneous diagnosis of convergence. Having multiple par-
allel chains reduces the probability of this happening and
allows for more accurate convergence diagnostics.4 An ad-
ditional advantage of multiple parallel walks, from an im-
plementation point of view, is that it is amenable to parallel
implementation from different machines or different threads
in the same machine. Some coordination is then required
to increase efficiency by not downloading information about
nodes that have already been visited by independent walks.

Our proposed crawling technique consists of several par-
allel MHRW walks. Each walk starts from a different node
in V0 ⊂ V , |V0| ≥ 1 (|V0| = 28 in our case) and proceeds
independently of the others. The initial nodesV0 are ran-
domly chosen in different networks. For a fair comparison,
we compare our approach (multiple MHRWs) to multiple
RWs and multiple BFSs, all starting from the same set of
initial nodesV0.

3.2.3 Convergence Tests

4We note that the advantage of multiple random walks is achieved
when there is no fixed budget in the number of samples that would
lead to many short chains; this is true in our case.
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Valid inferences from MCMC are based on the assump-
tion that the samples are derived from the equilibrium dis-
tribution, which is true asymptotically. In order to correctly
diagnose when convergence occurs, we use standard diag-
nostic tests developed within the MCMC literature [7].

One type of convergence has to do with losing dependence
from the starting point. A standard approach to achieve this
is to run the sampling long enough and to discard a number
of initial ‘burn-in’ iterations. From a practical point of view,
the “burnt-in” comes at a cost. In the case of Facebook, it is
the consumed bandwidth (in the order of terabytes) and mea-
surement time (days or weeks). It is therefore crucial to as-
sess the convergence of our MCMC sampling, and to decide
on appropriate settings of ‘burn-in’ and total running time.
From a theoretical point of view, the burn-in can be decided
by using intra-chain and inter-chain diagnostics. In particu-
lar, we use two standard convergence tests, widely accepted
and well documented in the MCMC literature, Geweke [6]
and Gelman-Rubin [5], described below. In Section 5, we
apply these tests on several node properties, including the
node degree, userID, network ID and membership; please
see Section 5.1.4 for details. Below, we briefly outline the
rationale of these tests and we refer the interested reader to
the references for more details.

Geweke Diagnostic. The Geweke diagnostic [6] detects
the convergence of a single Markov chain. LetX be a sin-
gle sequence of samples of our metric of interest. Geweke
considers two subsequences ofX , its beginningXa (typi-
cally the first 10%), and its endXb (typically the last 50%).
Based onXa andXb, we compute the z-statistic

z =
E(Xa)− E(Xb)

√

V ar(Xa) + V ar(Xb)
.

With increasing number of iterations,Xa andXb move fur-
ther apart, which limits the correlation between them. As
they measure the same metric, they should be identically dis-
tributed when converged and, according to the law of large
numbers, thez values become normally distributed with mean
0 and variance 1. We can declare convergence when most
values fall in the[−1, 1] interval.

Gelman-Rubin Diagnostic. Monitoring one long sequence
has some disadvantages.E.g.,if our chain stays long enough
in some non-representative region of the parameter space,
we might erroneously declare convergence. For this rea-
son, Gelman and Rubin [5] proposed to monitorm > 1
sequences. Intuitively speaking, the Gelman-Rubin diagnos-
tic compares the empirical distributions of individual chains
with the empirical distribution of all sequences together.If
they are similar enough, we can declare convergence. This is
captured by a single valueR that is a function of means and
variances of all chains (taken separately and together). With
time,R approaches 1, and convergence is declared typically
for values smaller than 1.02.

Finally, we note that even after the burn-in period, strong
correlation of consecutive samples in the chain may affect

sequential analysis. This is typically addressed by thinning,
i.e., keeping only one everyr samples. In our approach,
instead of thinning, we do sub-sampling of nodes after burn-
in, which has essentially the same effect.

3.3 Ground Truth: Uniform Sample (UNI)
Assessing the quality of any graph sampling method on

an unknown graph, as it is the case when measuring real
systems, is a challenging task. In order to have a “ground
truth” to compare against, the performance of such methods
is typically tested on artificial graphs (using models such as
Erdös-Rényi, Watts-Strogatz or Barabási-Albert, etc.). This
has the disadvantage that one can never be sure that the re-
sults can be generalized to real networks that do not follow
the simulated graph models and parameters.

Fortunately, Facebook is an exception (for the moment):
there is a unique opportunity to obtain a truly uniform sam-
ple of Facebook nodes by generating uniformly random 32-
bit userIDs, and by polling Facebook about their existence.
If the ID exists, we keep it, otherwise we discard it. This
simple method, known as rejection sampling, guarantees to
select uniformly random userIDS from the existing FB users
regardless of their actual distribution in the userID space.
We refer to this method as ‘UNI’, and use it as a ground-
truth uniform sampler.

Although UNI sampling currently solves the problem of
uniform node sampling in Facebook, we believe that our
methodology (and results) remain important. There are two
necessary conditions for UNI to work. First, the ID space
must not be sparse for this operation to be efficient. The
number of Facebook (2.0e8) users today is comparable to
the size of the userID space (4.3e9), resulting in about one
user retrieved per 22 attempts on average. If the userID was
64bits long5 or consisting of strings of arbitrary length, UNI
would be infeasible.E.g., Orkut has a 64bit userID and hi5
uses a concatenation of userID+Name. Second, such an op-
eration must be supported by the system. Facebook currently
allows to verify the existence of an arbitrary userID and re-
trieve her list of friends; however, FB may remove this op-
tion in the future,e.g.,for security reasons.

In summary, we were fortunate to be able to obtain the
ground truth, through uniform sampling of userIDs. This al-
lowed us to demonstrate that our results perfectly agree with
it. However, crawling friendship relations is a fundamen-
tal primitive available in all OSNs and, we believe, the right
building block for designing sampling techniques in OSNs,
in the long run.

4. DATA COLLECTION

4.1 Collecting user properties of interest

5That is probable in the future either for security reasons i.e. to
hinder efforts of data collection; or to allocate more userID space.
See part 5.2.3 for current userID space usage
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Figure 1: Information that we obtain about a user.

bit attribute explanation
1 Add as friend =1 if w can propose to ‘friend’u
2 Photo =1 if w can see the profile photo ofu

3 View friends =1 if w can see the friends ofu
4 Send message=1 if w can send a message tou

Table 1: Basic privacy settings of a useru with respect to
her non-friend w.

Fig. 1 summarizes the information that we obtain about
each user that we visit during our crawls.

Name and userID.Each user is uniquely defined by its
userID, which is a 32-bit number. Each user presumably
provides her real name. The names do not have to be unique.

Friends list. A core idea in social networks is the pos-
sibility to declare friendship between users. In Facebook,
friendship is always mutual and must be accepted by both
sides. Thus the social network is undirected.

Networks. Facebook uses the notion of networks to or-
ganize its users. There are two types of networks. The first
type isregional(geographical) networks. There are 507 pre-
defined regional networks that correspond to cities and coun-
tries around the world. A user can freely join any regional
network but can be a member of only one regional network
at a time. Changes are allowed, but no more than two ev-
ery 6 months. Roughly 62% of users belong to no regional
network. The second type of networks indicates workplaces
or schools and has a stricter membership: it requires a valid
email account from the corresponding domain. On the other
hand, a user can belong to many such networks.

Privacy settingsQv. Each useru can restrict the amount
of information revealed to any non-friend nodew, as well as
the possibility of interaction withw. These are captured by
four basic binary privacy attributes, as described in Table1.
We refer to the resulting 4-bit number as privacy settingsQv

of nodev. By default, Facebook setsQv = 1111 (allow all).
Profiles. Much more information about a user can poten-

tially be obtained by viewing her profile. Unless restricted
by the user, the profile can be displayed by her friends and
users from the same network.In this paper, we do not collect
any profile, even if it is open/publicly available. We study
only the basic information mentioned above.

4.2 Collection Process

Figure 2: Basic node information collected when visiting
a given user.

Crawling FB to collect this information faces several chal-
lenges, which we describe below, along with our solutions.

One node view. Fig. 2 shows the information collected
when visiting the “show friends” webpage of a given user
u, which we refer to asbasic node information. Because
the Network and Privacy information ofu are not directly
visible, we collect it indirectly by visiting one ofu’s friends
and using the “show friends” feature.

Invalid nodes. There are two types of nodes that we de-
clare invalid. First, if a useru decides to hide her friends
and to set the privacy settings toQu = ∗ ∗ 0∗, the crawl
cannot continue. We address this problem by backtracking
to the previous node and continuing the crawl from there, as
if u was never selected. Second, there exist nodes with de-
greekv = 0; these are not reachable by any crawls, but we
stumble upon them during the UNI sampling of the userID
space. Discarding both types of nodes is consistent with our
problem statement, where we already declared that we ex-
clude such nodes (either not publicly available or isolated)
from the graph we want to sample.

Implementation Details about the Crawls. In Section
3.2.2, we discussed the advantages of using multiple par-
allel chains both in terms of convergence and implementa-
tion. We ran|V0| = 28 different independent crawls for
each algorithm, namely MHRW, BFS and RW, all seeded at
the same initial, randomly selected nodesV0. We let each
independent crawl continue until exactly 81K samples are
collected.6 In addition to the 28×3 crawls (BFS, RW and
MHRW), we ran the UNI sampling until we collected 982K
valid users, which is comparable to the 957K unique users
collected with MHRW.

In terms of implementation, we developed a multi-threaded
crawler in Python and used a cluster of 56 machines. A
crawler does HTML scraping to extract the basic node in-
formation (Fig. 2) of each visited node. We also have a
server that coordinates the crawls so as to avoid download-
ing duplicate information of previously visited users. This
coordination brings many benefits: we take advantage of the
parallel chains in the sampling methodology to speed up the
process, we do not overload the FB platform with duplicate
6We count towards this value all repetitions, such as the self-
transitions of MHRW, and returning to an already visited state (RW
and MHRW). As a result, the total number of unique nodes visited
by each MHRW crawl is significantly smaller than 81K.
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MHRW RW BFS Uniform
Total number of valid users 28×81K 28×81K 28×81K 982K
Total number ofuniqueusers 957K 2.19M 2.20M 982K
Total number ofuniqueneighbors 72.2M 120.1M 96.6M 58.3M
Crawling period 04/18-04/23 05/03-05/08 04/30-05/03 04/22-04/30
Avg Degree 95.2 338 323.9 94.1
Median Degree 40 234 208 38

Num of overlap. users
MHRW ∩ RW 16.2K
MHRW ∩ BFS 15.1K
MHRW ∩ Uniform 4.1K
RW ∩ BFS 64.2K
RW ∩ Uniform 9.3K
BFS∩ Uniform 15.1K

Table 2: (Left:) Collected datasets by different algorithms. The crawling algorithms (MHRW, RW and BFS) consist of
28 parallel walks each, with the same 28 starting points. UNIis the uniform sample of userIDs. (Right:) The overlap
between different datasets is small.

Figure 3: The ego network of a useru. (Invalid neighbor
w, whose privacy settingsQw = ∗∗0∗, do not allow friend
listing is discarded.)

Number of egonets 55K
Number of neighbors 9.28M
Number of unique neighbors5.83M
Crawling period 04/24-05/01
Avg Clustering coefficient 0.16
Avg Assortativity 0.233

Table 3: Ego networks collected for 55K nodes, ran-
domly selected from the users in the MHRW dataset.

requests, and the crawling process continues in a faster pace
since each request to FB servers returns new information.

Ego Networks. The sample of nodes collected by our
method enables us to study many features of FB users in
a statistically unbiased manner. However, more elaborate
topological measures, such as clustering coefficient and as-
sortativity, cannot be estimated based purely on a single-
node view. For this reason, after finishing the BFS, RW,
MHRW crawls, we decided to also collect a number ofego
netsfor a sub-sample of the MHRW dataset only (because
this is the only representative one). The ego net is defined in
the social networks literature [28], and shown in Fig. 3, as
full information (edges and node properties) about a user and
all its one-hop neighbors. This requires visiting 100 nodes
per node (ego) on average, which is impossible to do for all
visited nodes. For this reason, we collect the ego-nets only
for 55K nodes, randomly selected from all nodes in MHRW
(considering all 28 chains, after the 6000 ‘burn-in’ period.
This sub-sampling has the side advantage that it eliminates
the correlation of consecutive nodes in the same crawl, as
discussed in Section 3.2.3.

4.3 Data sets description
Information about the datasets we collected for this pa-

per is summarized in Table 2 and Table 3. This information
refers to all sampled nodes, before discarding any “burn-in”.
The MHRW dataset contains 957K unique nodes, which is
less than the28×81K = 2.26M iterations in all 28 random
walks; this is because MHRW may repeat the same node in
a walk. The number of rejected nodes in the MHRW pro-
cess, without repetitions, adds up to 645K nodes.7 In the
BFS crawl, we observe that the overlap of nodes between the
28 different BFS instances is very small: 97% of the nodes
are unique, which also confirms that the random seeding
chose different areas of Facebook. In the RW crawl, there
is still repetition of nodes but is much smaller compared to
the MHRW crawl, as expected. Again, unique nodes repre-
sent 97% of the RW dataset. Table 2 (right) shows that the
common users between the MHRW, RW, BFS and Uniform
datasets are a very small persentage, as expected. The largest
observed, but still objectively small, overlap is between RW
and BFS and is probably due to the common starting points
selected.

During the Uniform userID sampling, we checked 18.53M
user IDs picked uniformly at random from[1, 232]. Out of
them, only 1216K users8 existed. Among them, 228K users
had zero friends; we discarded these isolated users to be con-
sistent with our problems statement. This results in a set of
985K valid users with at least one friend each. Considering
that the percentage of zero degree nodes is unusually high,
we manually confirmed that 200 of the discarded users have
indeed zero friends.

Also, we collected 55.5K egonets that contain basic node
information (see Fig 2) for 5.83M unique neighbors. A sum-
mary of the egonets dataset, which includes properties that
we analyze in Section 6, is summarized in Table.3.

Finally, as a result of (i) the multiple crawlings, namely
BFS, random Walks, Metropolis random walks, uniform,

7Note that in order to obtain an unbiased sample, we also discard
6K burnt-in nodes from each of the 28 MHRW independent walks.
8In the set of 1216K existing users retrieved using uniform userID
sampling, we find a peculiar subset that contains 37K users. To be
exact, all users withuserID > 1.78 · 10

9 have zero friends and
the name field is empty in the list of friends HTML page. This
might be an indication that these accounts do not correspondto
real people. Part 5.2.3 contains more information about theoverall
observed userID space.
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neighbors of uniform users and (ii) the ego networks of a
sub-sample of the Metropolis walk, we are able to collect
11.6 million unique nodes with basic node information. As
a result, the total number of unique users (including the sam-
pled nodes and the neighbors in their egonets) for which we
have basic privacy and network membership information be-
comes immense. In particular, we have such data for 171.82
million9 unique Facebook users. This is a significant sam-
ple by itself given that Facebook is reported to have close to
200million users as of this moment. Interestingly, during our
analysis we have seen that this set of 171.82M (of sampled
+ egonet) nodes is a large but not representative set of FB.
In contrast, the MHRW sample is much smaller (less than
1M) but representative, which makes the case for the value
of unbiased sampling vs. exhaustive measurements.

5. EVALUATION OF OUR METHODOLOGY
In this section, we evaluate our methodology (multiple

MHRW) both in terms of convergence and in terms of the
representativeness of the sample. First, in Section 5.1, we
study in detail the convergence of the proposed algorithm,
with respect to several properties of interest. We find a burn-
in period of 6K samples, which we exclude from each inde-
pendent MHRW crawl. The remaining 75K x 28 sampled
nodes from the MHRW method is our sample dataset. Sec-
tion 5.2 presents essentially the main result of this paper.
It demonstrates that the sample collected by our method is
indeed uniform: it estimates several properties of interest
perfectly,i.e. identically to those estimated by the true UNI
sample. In contrast, the baseline methods (BFS and RW)
deviate significantly from the truth and lead to substantively
erroneous estimates.

5.1 MHRW convergence analysis

5.1.1 Typical MHRW evolution

To get more understanding of MHRW, let us first have a
look at the typical chain evolution. At every iteration MHRW
may either remain at the current user, or move to one of its
neighbors. An example outcome from a simulation is: . . . 1,
1, 1, 1, 17, 1, 3, 3, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 9, 1. . . , where
each number represents the number of consecutive rounds
the chain remained at a given node. We note that a corre-
sponding outcome for RW would consist only of ones. In
our runs, roughly 45% of the proposed moves are accepted,
which is also denoted in the literature as the acceptance rate.
Note that MHRW stays at some nodes for relatively long
time (e.g., 17 iterations in the example above). This happens
usually at some low degree nodevl, and can be easily ex-
plained by the nature of MHRW. For example, in the extreme
case, ifvl has only one neighborvh, then the chain stays at
9Interestingly,∼ 800 out of 171.82M users haduserID > 32bit

(or 5 · 10
−4

%), in the form of1000000000xxxxx with only the
last five digits used. We suspect that these userIDs are special as-
signments.
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Figure 4: Average node degreekv observed by the
MHRW chains and by UNI, as a function of the number
of iterations.

vl on average forkvh
iterations (kv is a degree of nodev),

which often reaches hundreds. This behavior is required to
make the walk converge to the uniform distribution.

As a result, a typical MHRW visits fewer unique nodes
than RW or BFS of the same length. This raises the ques-
tion: what is a fair way to compare the results of MHRW
with RW and BFS? Indeed, when crawling OSN, ifkvl

= 1
and MHRW stays atvl for say 17 iterations, its bandwidth
cost is equal to that of one iteration (assuming that we cache
the visited neighbor ofvl). This suggests, that in our com-
parisons it might be fair to fix not the total number of itera-
tions, but the number of visited unique nodes. However, we
decided to follow the conservative iteration-based compari-
son approach, which favors the alternatives rather than our
algorithm. This also simplifies the explanation.

5.1.2 Chain length and Thinning

One decision we have to make is about the number of it-
erations for which we run MHRW, or thechain length. This
length should be appropriately long to ensure that we are
at equilibrium. Consider the results presented in Fig. 4. In
order to estimate the average node degreekv based on a sin-
gle MHRW only, we should take at least 10K iterations to
be likely to get within±10% off the real value. In con-
trast, averaging over all 28 chains seems to provide simi-
lar confidence after fewer than 1K iterations. Fig. 5 studies
the frequency of visits at nodes with specific degrees, rather
than the average over the entire distribution. Again, a chain
length of 81K (top) results in much smaller estimation vari-
ance than taking 5K consecutive iterations (middle).

Another effect that is revealed in Fig.5 is the correlation
between consecutive samples, even after equilibrium has been
reached. It is sometimes reasonable to break this correla-
tion, by considering everyith sample, a process which is
calledthinning, as discussed at the end of Section 3.2.3. The
bottom plot in Fig. 5 is created by taking 5K iterations per
chain with a thinning factor ofi = 10. It performs much
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Figure 5: The effect of chain length and thinning on the
results. We present histograms of visits at nodes with a
specific degreek ∈ {10, 50, 100, 200} , generated under
three conditions. (top): All nodes visited after the first
6k burn-in nodes. (middle): 5k consecutive nodes, from
hop 50k to hop 55k. This represents a short chain length.
(bottom): 5k nodes by taking every 10th sample (thin-
ning).

better than the middle plot, despite the same total number
of samples. In addition, thinning in MCMC samplings has
the side advantage of saving space instead of storing all col-
lected samples. However, in the case of crawling OSNs, the
main bottleneck is the time and bandwidth necessary to per-
form a single hop, rather than storage and post-processing of
the extracted information. Therefore we did not apply thin-
ning to our basic crawls.

However, we applied another idea (sub-sampling) that had
a similar effect with thinning, when collecting the second
part of our data - the egonets. Indeed, in order to collect
the information on a single egonet, our crawler had to visit
the user and all its friends, an average∼ 100 nodes. Due
to bandwidth and time constraints, we could fetch only 55K
egonets. In order to avoid correlations between consecutive
egonets, we collected a random sub-sample of the MHRW
(post burn-in) sample, which essentially introduced spacing
among sub-sampled nodes.

5.1.3 Burn-in and Diagnostics

As discussed on Section 3.2.3, the iterations before reach-
ing equilibrium, known as “burn-in period” should be dis-
carded. The Geweke and Gelman-Rubin diagnostics are de-
signed to detect this burn-in period within each independent
chain an across chains, respectively. Here we apply these di-
agnostics to several node properties of the nodes collectedby
our method and choose the maximum period from all tests.

The Geweke diagnostic was run separately on each of the
28 chains for the metric of node degree. Fig. 7 presents the
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Figure 7: Geweke z score for node degree. We declare
convergence when all values fall in the[−1, 1] interval.
Each line shows the Geweke score for a different MHRW
chain, out of the 28 parallel ones. For metrics other than
node degree, the plots look similar.
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Figure 8: Gelman-Rubin R score for five different met-
rics. Values below 1.02 are typically used to declare con-
vergence.

results for the convergence of average node degree. We de-
clare convergence when all 28 values fall in the[−1, 1] in-
terval, which happens at roughly iteration 500. In contrast,
the Gelman-Rubin diagnostic analyzes all the 28 chains at
once. In Fig 8 we plot the R score for five different metrics,
namely (i) node degree (ii) networkID (or regional network)
(iii) user ID (iv) and (v) membership in specific regional net-
works (a binary variable indicating whether the user belongs
to that network). After 3000 iterations all the R scores drop
below 1.02, the typical target value used for convergence in-
dicator.

We declare convergence when all tests have detected it.
The Gelman-Rubin test is the last one at 3K nodes. To be
even safer, in each independent chain we conservatively dis-
card 6K nodes, out of 81K nodes total. For the remainder of
the paper, we work only with the remaining 75K nodes per
independent chain.

5.1.4 The choice of metric matters

MCMC is typically used to estimate some feature/metric,
i.e.,a function of the underlying random variable. The choice
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Figure 6: Histograms of visits at node of a specific degree (left) and in a specific regional network (right). We consider
three sampling techniques: BFS (top), RW (middle) and MHRW (bottom). We present how often a specific type of
nodes is visited by the 28 crawlers (’crawls’), and by the uniform UNI sampler (’uniform’). We also plot the visit
frequency averaged over all the 28 crawlers (’average crawl’). Finally, ’size’ represents the real size of each regional
network normalized by the the total facebook size. We used all the 81K nodes visited by each crawl, except the first
6k burn-in nodes. The metrics of interest cover roughly the same number of nodes (about 0.1% to 1%), which allows
for a fair comparison.

of this metric can greatly affect the convergence time. The
choice of metrics used in the diagnostics of the previous sec-
tion was guided by the following principles:

• We chose the node degree because it is one of the met-
rics we want to estimate; therefore we need to ensure
that the MCMC has converged at least with respect to
it. The distribution of the node degree is also typically
heavy tailed, and thus not easy to converge.

• We also used several additional metrics (e.g. network
ID, user ID and membership to specific networks), which
are uncorrelated to the node degree and to each other,
and thus provide additional assurance for convergence.

Let us focus on two of these metrics of interest, namely
node degreeand sizes of geographical networkand study
their convergence in more detail. The results for both met-
rics and all three methods are shown in Fig.6. We expected
node degrees to not depend strongly on geography, while the
relative size of geographical networks to strongly depend on
geography. If our expectation is right, then (i) the degree dis-
tribution will converge fast to a good uniform sample even
if the chain has poor mixing and stays in the same region
for a long time; (ii) a chain that mixes poorly will take long
time to barely reach the networks of interests, not to men-

tion producing a reliable network size estimate. In the latter
case, MHRW will need a large number of iterations before
collecting a representative sample.

The results presented in Fig. 6 (bottom) indeed confirm
our expectations. MHRW performs much better when esti-
mating the probability of a node having a given degree, than
the probability of a node belonging to a specific regional net-
work. For example, one MHRW crawl overestimates the size
of ’New York, NY’ by roughly 100%. The probability that a
perfect uniform sampling makes such an error (or larger) is
∑∞

i=i0

(

i

n

)

pi(1− p)i ≃ 4.3 · 10−13, where we tooki0 = 1k,
n = 81K andp = 0.006.

5.2 Comparison to other sampling techniques
This section presents essentially the main result of this pa-

per. It demonstrates that our method collects a truly uniform
sample. It estimates three distributions of interest, namely
those of node degree, regional network size and userID, per-
fectly, i.e., identically to the UNI sampler. In contrast, the
baseline algorithms (BFS and RW) deviate substantively from
the truth and lead to misleading estimates and behavior. This
was expected for the degree distribution, which is known to
be biased in the BFS and RW cases, but it is surprising in the
case of the other two metrics.
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Figure 9: Degree distribution estimated by the crawls and the uniform sampler. All plots use log-log scale. For the first
three (pdf) plots we used logarithmic binning of data; the last plot is a ccdf.

5.2.1 Node degree distribution

In Figure 9 we present the degree distributions based on
the BFS, RW and MHRW samples. The average MHRW
crawl’s pdf and ccdf, shown in Fig.9(a) and (d) respectively,
are virtually identical with UNI. Moreover, the degree distri-
bution found by each of the 28 chains separately are almost
perfect. In contrast, BFS and RW introduce a strong bias to-
wards the high degree nodes. For example, the low-degree
nodes are under-represented by two orders of magnitude. As
a result, the estimated average node degree iskv ≃ 95 for
MHRW and UNI, andkv ≃ 330 for BFS and RW. Interest-
ingly, this bias is almost the same in the case of BFS and
RW, but BFS is characterized by a much higher variance.
These results are consistent with the distributions of specific
degrees presented in Figure 6 (left).

Notice that that BFS and RW estimate wrong not only the
parameters but also the shape of the degree distribution, thus
leading to wrong information. As a side observation we can
also see that the true degree distribution clearlydoes notfol-
low a power-law.

5.2.2 Regional networks

Let us now consider a geography-dependentsensitive met-
ric, i.e.,the relative size of regional networks. The results are
presented in Fig. 6 (right). BFS performs very poorly, which
is expected due to its local coverage. RW also produces bi-
ased results, possibly because of a slight positive correlation

that we observed between network size and average node
degree. In contrast, MHRW performs very well albeit with
higher variance, as already discussed in Section 5.1.4.

5.2.3 The userID space

Finally, we look at the distribution of a property that is
completely uncorrelated from the topology of FB, namely
the user ID. When a new user joins Facebook, it is automat-
ically assigned a 32-bit number, called userID. It happens
before the user specifies its profile, joins networks or adds
friends, and therefore one could expect no correlations be-
tween userID and these features. In other words, the degree
bias of BFS and RW should not affect the usage of userID
space. Therefore, at first sight we were very surprised to
find big differences in the usage of userID space discovered
by BFS, RW and MHRW. We present the results in Fig 10.
BFS and RW are clearly shifted towards lower userIDs.

The origin of this shift is probably historical. The sharp
steps at229≃0.5e9 and at230≃1.0e9 suggest that FB was
first using only 29 bit of userIDs, then 30, and now 31. As
a result, users that joined earlier have the smaller userIDs.
At the same time, older users should have higher degrees
on average. If our reasoning is correct, userIDs should be
negatively correlated with node degrees. This is indeed the
case, as we show in the inset of Fig 10. This, together with
the degree bias of BFS and RW, explains the shifts of userIDs
distributions observed in the main plot in Fig 10.
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Figure 10: User ID space usage discovered by BFS, RW,
MHRW and UNI. Each user is assigned a 32 bit long
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values above1.8e9 almost never occur. Inset: The av-
erage node degree (in log scale) as a function of userID.

Needless to mention, that in contrast to BFS and RW, our
MHRW performed perfectly with respect to the userID met-
ric.

5.3 Conclusion
We have demonstrated that MHRW converges and per-

forms remarkably well, virtually undistinguishable from UNI.
In contrast, the two alternative sampling techniques, RW and
BFS, are strongly biased. Moreover, this bias shows up not
only when estimating directly node degrees (which was ex-
pected), but also when we consider other metrics such as
the size of regional network, or the seemingly independent
userID. This is because these and many other metrics corre-
late, positively or negatively, with the node degree.

6. FACEBOOK CHARACTERIZATION
In the previous sections, we sampled Facebook and demon-

strated convergence and a true uniform sample of about 1M
Facebook nodes. In this section, we use this unbiased sam-
ple and the egonets dataset to study some topological and
non-topological features of Facebook. In contrast to previ-
ous works, which focused on some particular regions [18,26]
or used biased sampling methods [22,29], our results are rep-
resentative of the entire Facebook graph.

6.1 Topological characteristics
We first focus on purely topological aspects of the graph

of Facebook.

6.1.1 Degree distributions

In Fig. 9, we present the true node degree distributions of
Facebook, the pdf (upper left) and the corresponding ccdf
(lower right). Interestingly, and unlike previous studiesof
crawled datasets in online social networks in [2, 22, 29], we
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Figure 11: Assortativity - correlation between degrees of
neighboring nodes. The dots represent the degree-degree
pairs (randomly subsampled for visualization only). The
line uses log-binning and takes the average degree of all
nodes that fall in a corresponding bin.

conclude that the node degree distribution of Facebookdoes
not follow a power law distribution. Instead, we can identify
two regimes, roughly1≤k<300 and300≤k≤5000, each
following a power law with exponentαk<300 = 1.32 and
αk≥300 = 3.38, respectively.10 We note, however, that the
regime300 ≤ k ≤ 5000 covers only slightly more than one
decade.

6.1.2 Assortativity

Depending on the type of complex network, nodes may
tend to connect to similar or different nodes. For example,
in most social networks high degree nodes tend to connect
to other high degree nodes [24]. Such networks are called
assortative. In contrast, biological and technological net-
works are typicallydisassortative, i.e., they exhibit signifi-
cantly more high-degree than low-degree connections.

In Fig. 11 we plot the node degree vs. the degrees of its
neighbors. We observe a positive correlation, which implies
assortative mixing and is in agreement with previous stud-
ies of social networks. We can also summarize this plot by
calculating the Pearson correlation coefficient, orassortativ-
ity coefficientr. The assortativity coefficient of Facebook is
r = 0.233. This value is higher thanr′ = 0.17 reported by
Wilson et al in [29]. A possible explanation of this differ-
ence is that [29] uses the Region-Constrained BFS to sam-
ple Facebook. It stops at a boundary of a regional network
and thus misses many connections to, typically high-degree,
nodes outside the network.

6.1.3 Clustering coefficient

In social networks, it is likely that two friends of a user
are also friends to each other. The intensity of this phe-
nomenon can be formally captured by theclustering coef-
ficientCv of a nodev, defined as the relative number of con-
nections between the nearest neighbors ofv. In other words,
Cv = 2mv

kv(kv−1) , wheremv is the total number of edges be-

10Exponents were computed with the help of formula (5) in [25].
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Figure 12: Clustering coefficient of Facebook users as
function of their degree.
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Figure 13: The distribution of the privacy settings among
∼ 171.8M Facebook users. ValueQv =1111 corresponds
to default settings (privacy not restricted) and covers
84% of all users.

tween the nearest neighbors ofv, andkv is the degree of
nodev. The clustering coefficient of a network is just an av-
erage valueC = 1

n

∑

v Cv, wheren is the number of nodes
in the network. We find the average clustering coefficient of
Facebook to beC = 0.16, similar to that reported in [29].

Since the clustering coefficient tends to depend strongly
on the node’s degreekv, it makes sense to study its average
valueC(k) conditioned onkv. We plotCv as a function of
kv in Fig. 12. Comparing with [29], we find a larger range
in the degree-dependent clustering coefficient ([0.05, 0.35]
instead of [0.05, 0.18]).

6.2 Privacy awareness
Recall from Section 4 that our crawls collected, among

other properties, the privacy settingsQv for each nodev.
Qv consists of four bits, each corresponding to one privacy
attribute. By default, Facebook sets these attributes to ‘al-
low’, i.e., Qv = 1111 for a new nodev. Users can freely
change these default settings ofQv. We refer to the users
that choose to do so as ‘privacy aware’ users, and we de-
note byPA the level of privacy awareness of a userv, i.e.,
privacy aware users havePA = P(Qv 6=1111).

In Fig. 13, we present the distribution of privacy settings
among Facebook users. About 84% of users leave the set-
tings unchanged,i.e.,P(Qv=1111) ≃ 0.84. The remaining
16% of users modified the default settings, yieldingPA =
0.16 across the entire Facebook. The two most popular mod-
ifications areQv = 1011 (‘hide my photo’) andQv = 1101

PA Networkn PA Networkn

0.08 Iceland . . . . . .
0.11 Denmark 0.22 Bangladesh
0.11 Provo, UT 0.23 Hamilton, ON
0.11 Ogden, UT 0.23 Calgary, AB
0.11 Slovakia 0.23 Iran
0.11 Plymouth 0.23 India
0.11 Eastern Idaho, ID 0.23 Egypt
0.11 Indonesia 0.24 United Arab Emirates
0.11 Western Colorado, CO 0.24 Palestine
0.11 Quebec City, QC 0.25 Vancouver, BC
0.11 Salt Lake City, UT 0.26 Lebanon
0.12 Northern Colorado, CO 0.27 Turkey
0.12 Lancaster, PA 0.27 Toronto, ON
0.12 Boise, ID 0.28 Kuwait
0.12 Portsmouth 0.29 Jordan
. . . . . . 0.30 Saudi Arabia

Table 4: Regional networks with respect to their privacy
awarenessPA = P(Qv 6=1111 |v ∈ n) among∼ 171.8M
Facebook users. Only regions with at least 50K users are
considered.
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Figure 14: Privacy awareness as a function of node de-
gree in the egonets dataset. We consider only the nodes
with privacy settings set to ’**1*’, because only these
nodes allow us to see their friends and thus degree. So
herePA = P(Qv 6=1111 | kv = k, Qv=∗ ∗ 1∗).

(‘hide my friends’), each applied by about 7% of users.
The privacy awarenessPA of Facebook users depends on

many factors, such as the geographical location, node degree
or the privacy awareness of friends. For example, in Table 4
we classify the regional networks with respect toPA of their
members. Note the different types of countries in the two ex-
treme ends of the spectrum. In particular, many FB users in
the Middle East seem to be highly concerned about privacy.
Interestingly, Canada regions show up at both ends, clearly
splitting into English and French speaking parts.

Another factor that affects the privacy settings of a user is
the node degree. We present the results in Fig. 14. Low de-
gree nodes tend to be very concerned about privacy, whereas
high degree nodes hardly ever bother to modify the default
settings. This clear trend makes sense in practice. Indeed,
to protect her privacy, a privacy concerned user would care-
fully select her Facebook friends,e.g.,by avoiding linking to
strangers. At the other extreme, there are users who prefer
to have as many ‘friends’ as possible, which is much easier
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Figure 15: Privacy awareness as a function of privacy
awareness of node’s neighbors in the egonets dataset.
We consider only the nodes with privacy settings set to
’**1*’, because only these nodes allow us to see their
friends, soPA = P(Qv 6=1111 | PA, Qv=∗ ∗ 1∗).

with unrestricted privacy attributes.
Finally, in Fig. 15 we show how privacy awareness of a

user depends on the privacy awareness of her friends. We
observe a clear positive correlation.

7. CONCLUSION
In this paper, first, we proposed a method for sampling

Facebook in a principled way so as to obtain a uniform sam-
ple of Facebook users. Our approach consists of (i) running
multiple chains in parallel, each of which performs a Mul-
tiple Hasting Random Walk and (ii) ensuring convergence
using appropriate diagnostics run on several metrics of in-
terest. We demonstrate that, for all practical purposes, our
method achieves a perfectly random sample of 1M nodes (a
small sample size), while traditional alternative techniques
(BFS and RW) introduce significant bias on degree distri-
bution and other metrics, even with a significantly number
of samples. Second, and based on our unbiased sample and
on a sub-sample of egonets, we also studied some interest-
ing properties of Facebook. Some of our findings agree with
previous studies, some disagree and reveal a substantive bias
of prior sampling techniques, and some are new to the best
of our knowledge. The sampling approach we described in
this paper is principled, effective, and applicable to any OSN
(as it is based on crawling the friendship relation which is a
fundamental primitive in any OSN).
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