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Across the sciences, the statistical analysis of networks is central to the production of knowledge
on relational phenomena. Because of their ability to model the structural generation of networks,
exponential random graph models are a ubiquitous means of analysis. However, they are limited by
an inability to model networks with valued edges. We solve this problem by introducing a class of
generalized exponential random graph models capable of modeling networks whose edges are valued,
thus greatly expanding the scope of networks applied researchers can subject to statistical analysis.

PACS numbers: 02.10.Ox, 89.65.Cd, 89.75.Hc

The need to analyze networks statistically transcends
disciplines that have occasion to study the relationships
between units. Applications in physics [1–5], computer
science [6], the social sciences[7, 8], and other fields ex-
amine networks that vary in size and density, over time,
and have edges with values that vary from binary ties,
to counts, to bounded continuous and unbounded con-
tinuous edges. An important method for statistical infer-
ence on networks is the exponential random graph model
(ERGM)[9–11], which estimates the probability of an ob-
served network conditional on a vector of network statis-
tics that capture the generative structures in the network.
Yet the ERGM has a major limitation: it is only defined
for networks with binary ties[12, 13], thus excluding a
wide range of networks with valued edges (e.g., gene co-
expression networks, passage time on networks of various
media, monetary transactions, casualties in conflict net-
works).

We develop a class of generalized ERGMs (GERGMs)
for inference on networks with continuous edge values,
thus lifting the restriction of this methodology to a, pos-
sibly small, subset of networks. The form of our gen-
eralized model is similar to the ERGM in that it can be
flexibly specified to cover a broad range of generative fea-
tures. The GERGM can be estimated efficiently with a
Gibbs sampler.

The strengths and limitations of the ERGM are ap-
parent from its specification. Let Y be the n-vertex
network (adjacency matrix) of interest with m edges
(m = n(n − 1) if Y is directed and n(n − 1)/2 if it is
undirected). Yij is the edge from i to j. An ERGM of
that network is specified as:

P(Y,θθθ) =
exp{θθθ′ hhh(Y )}∑

all Y ∗∈Y exp{θθθ′ hhh(Y ∗)}
, (1)

where θθθ is a parameter vector, hhh(Y ) is a vector of statis-
tics on the network, and the object of inference is the
probability of the observed network among all possible
permutations of the network given the network statis-
tics. The hhh(Y ) term is what gives the ERGM much of
its power: this vector can contain statistics to capture

the endogenous structure of connectivity in the network
(statistics can be included to capture reciprocity, transi-
tivity, cyclicality, and a wide variety of other endogenous
structures) as well as the effects of exogenous covariates.

The challenges for modeling networks with valued
edges are apparent from the specification in equation 1.
The flexibility of the distribution comes from the lack of
constraints in specifying hhh; the only constraint is that
hhh is finite when evaluated on any binary network. This
assures that the denominator is a convergent sum, and
therefore represents a proper normalizing constant for
the distribution of networks. However, this convergence
is not assured whenever hhh is finite if the support of Y
is infinite. The model we derive retains the flexibility of
hhh within a framework that assures a proper probability
distribution for Y when Y has continuous edges.

Our generalized ERGM operates by constructing joint
continuous distributions on networks that permit the
representation of dependence features among the ele-
ments of Y through a set of statistics on the network,
hhh(Y ). As in the ERGM, the vector hhh can be specified
to represent many forms of dependence, including tran-
sitivity (i.e., clustering), cycling, and reciprocity; an im-
portant attribute of the model because such dependence
features characterize valued networks [13].

There are two specification steps in our approach to
GERGMs: first, we specify a tractable joint distribu-
tion that captures the dependencies of interest on a re-
stricted network, X, and then we transform X onto the
support of Y ; thus producing a probability model for Y .
To illustrate these steps, begin with consideration of the
restricted valued network X ∈ [0, 1]m, where m is the
number of edges.

In our first specification step, hhh is formulated to repre-
sent joint features of Y in the distribution of X:

fX(X,θθθ) =
exp [θθθ′hhh(X)]∫

[0,1]m
exp [θθθ′hhh(Z)] dZ

, (2)

where θθθ ∈ Rp is the parameter vector, hhh : [0, 1]m → Rp,
hhh is finite on [0, 1]m and hi(·) are the sums of subgraph

products such that for every i, ∂
2hhh(X)
∂2Xij

= 0. This is a flexi-
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ble specification because many dependence relationships
can be captured by summing products over subgraphs
of the network, particularly when the edges are in the
unit interval[13]. For instance, networks generated by a
highly reciprocal process are likely to exhibit high values
of
∑
i<j XijXji, and those in which connections gravi-

tate toward high-degree vertices exhibit high values of∑
i

∑
j,k 6=iXjiXki (i.e., “two-stars” [14]). An important

property of fX is that when θθθ = 0, X is a network of
independent uniform random variables.

In our second specification step, we apply parame-
terized, one-to-one, monotone increasing transformations
(G−1(·)) to the m edges of the restricted network, thus
transforming the restricted network X onto the support
of the network of interest Y . Yij = G−1

ij (Xij ,λλλij), where
λij parameterizes the transformation to capture marginal
features of Yij . Because dG−1(Xij ,λi)/dXij > 0, the
properties of multivariate transformations[15] imply that
the distribution of Y is fY (Y,θθθ,Λ) = fX(G(Y,ΛΛΛ), θθθ)|J |,
where the Jacobian matrix, J , is the matrix of first par-
tial derivatives. Since J is a diagonal matrix, we may
write the GERGM as

fY (Y,θθθ,Λ) =
exp [θθθ′hhh(G(Y,Λ))]∫

[0,1]m
exp [θθθ′hhh(Z)] dZ

∏
ij

g(Yij ,λij). (3)

A useful way to specify g is as a probability density
function (i.e., G is a CDF, and G−1 an inverse CDF)
parameterized to match the support of Y and capture
features of Y such as location, scale, and dependence
on covariates. This approach to specifying g has the ele-
gant feature that the distribution contains many common
models for independent and identically distributed vari-
ables as special cases when θθθ = 0. For instance, if g is a
Gaussian PDF with constant variance and the mean de-
pendent on a vector of covariates, the model reduces to
that assumed in least squares regression. The GERGM
also allows hypothesis tests for block restrictions (i.e.,
likelihood ratio or Wald tests) to test the assumption
that the edges of Y are independent conditional upon Λ.

There are two ways to interpret dependence model-
ing of Y via X. First, following [13], who derive an
ERGM-like model for a network with discrete edges on
the unit interval, X can be interpreted as a standardized
relational intensity network. Second, and more directly,
when g is a PDF, X is the random variable drawn from
the joint distribution of the quantiles of Y . Therefore, the
vectors hhh and θθθ characterize the dependencies among the
quantiles of Y . The latter interpretation closely resem-
bles the process of constructing joint distributions with
copula functions [16, 17]. A simple example of deriving
a joint distribution through the combination of hhh and g
is illustrated in figure 1, which presents the distributions
of X and Y for a directed network with two vertices ex-
hibiting a high degree of reciprocity.

Estimation of the parameters in the model is a non-
trivial task. The greatest challenge in estimating θθθ and
ΛΛΛ in equation 3 is that the integral in the denomina-
tor is typically intractable. Because of the polynomial

fX g(Y )

fY

FIG. 1. Bivariate distributions for edges in a two-vertex di-
graph. The darker the shading, the higher the relative like-
lihood of a point. In this example, g is the standard nor-
mal PDF, and fX is defined by hhh = {X12 + X21, X12X21},
and θθθ = {−3.5, 7}, representing negative density and positive
reciprocity effects.

structure of h, and the fact that the variables of inte-
gration are bounded, we know that the integral is both
positive and finite, meaning fY is a proper joint distri-
bution. However, inference requires the approximation
of the denominator.

In order to approximate the denominator in equation
3, we sample from fX using a Gibbs Sampler. To do so,
we require the conditional distribution of Xij |X−ij . To
simplify the notation, let

∫
[0,1]m

exp [θθθ′hhh(Z)] dZ = C(θθθ).

The conditional distribution (f cX) is given by

f cX(Xij |θθθ) =
exp

[
Xijθθθ

′ ∂hhh(X)
∂Xij

]
θθθ′
(
∂hhh(X)
∂Xij

)−1 [
exp(θθθ′ ∂hhh(X)

∂Xij
)− 1

] . (4)

We may then draw from the conditional distribution in
equation 4 using the inverse CDF method. If u is a uni-
form (0,1) random variable, then

Xij |X−ij ∼
ln
[
1 + u

(
exp

[
θθθ′ ∂hhh(X)

∂Xij

]
− 1
)]

θθθ′ ∂hhh(X)
∂Xij

. (5)

When θθθ′ ∂hhh(X)
∂Xij

= 0 the conditional density given in equa-

tion 4 is undefined. However, in this case, each point
in the unit interval is equally likely and the conditional
distribution of Xij is uniform(0,1).
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In order to estimate θθθ and ΛΛΛ, we maximize ln [fY ]:

θθθ′hhh(G(Y,Λ)) +
∑
ij

ln [g(Yij |λλλij)]− ln [C(θθθ)] . (6)

Our algorithm iteratively proceeds by maximum likeli-
hood (ML) estimation of ΛΛΛ|θθθ and Markov chain Monte
Carlo maximum likelihood estimation (MCMC-MLE) of
θθθ|ΛΛΛ until convergence. We derive an approximation to
the asymptotic variance-covariance matrix by the inverse
of the negative Hessian matrix at the last iteration.

The estimation of ΛΛΛ|θθθ is straightforward. Because C(θθθ)
does not depend on ΛΛΛ, ML estimation of ΛΛΛ|θθθ reduces to

arg max
ΛΛΛ

θθθ′hhh(G(Y,Λ)) +
∑
ij

ln [g(Yij |λλλij)]

 , (7)

a function easy to maximize using a hill-climbing algo-
rithm.

The estimation of θθθ|ΛΛΛ is more involved. Let X̂ =

G(Y, Λ̂ΛΛ) be the estimate of the intensity/quantile network
given the current estimate of the transformation param-
eters. The second term in equation 6 does not depend on
θθθ, so to estimate θθθ|ΛΛΛ we find

arg max
θθθ

(
θθθ′hhh(X̂)− ln [C(θθθ)]

)
, (8)

which requires an approximation of C(θθθ). We approxi-
mate C(θθθ) using MCMC-MLE; an iterative method it-

self. Let θθθ[i−1] be the previous estimate of θθθ, and X̃ be
a sample of n networks drawn from fX(X,θθθ[i−1]). Then,
an approximation to C(θθθ) is given by

Ĉ(θθθ) = C(θθθ[i−1])

n∑
j=1

exp
[
θθθ′hhh(X̃j)

]
exp

[
θθθ′[i−1]hhh(X̃j)

] . (9)

This requires a starting value for θθθ. In simulation ex-
periments, we have found the pseudolikelihood estimate

(arg maxθθθ

(∑
ij ln [f cX(Xij |θθθ)]

)
) to be effective in provid-

ing starting values for θθθ (i.e., θθθ[0]).
We illustrate important features of the GERGM and

demonstrate its efficacy by applying it to a real-world
network: domestic migration in the United States[18, 19].
We model changes in the directional migration flows be-
tween the 50 United States (as well as Washington D.C.
and Puerto Rico) between 2006 and 2007. Yij is the dif-
ference between the number of people who migrated from
state i to state j in 2007 and the number who migrated
from i to j in 2006. These data allow us to consider
the GERGM in the context of a valued network requir-
ing transformation away from an intensity network onto
a continuous unbounded support with exogenous covari-
ates and endogenous parameters, thus making full use of
the GERGM’s flexibility. We use the Cauchy distribu-
tion as our g function because its thick tails capture the

(a) Regression Estimates
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FIG. 2. Estimates of the parameters: bars span 95% confi-
dence intervals. 5,000 draws for three iterations used in the
MCMC-MLE

high empirical kurtosis (637) of the network [20]. Thus,
in the case where the edges of the network are indepen-
dent conditional on the covariates, this specification re-
duces to a generalized linear model (GLM) [21] with a
Cauchy link function. Because previous work on inter-
state migration[22] suggests that population, unemploy-
ment, per-capita income, and mean January tempera-
ture of both the sending and receiving states are signif-
icant determinants of migration, we include the change
in each of these variables from 2005 to 2006 as covari-
ates in our GERGM. We complete our specification by
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(a) Cycles (b) Dyadic Reciprocation
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FIG. 3. Reciprocal Feature Prediction: The boxplots repre-
sent the respective dependence statistic computed on 1,000
instances of the latent intensity network drawn from each

model. Let X̂ be the respective estimate of the intensity net-
work obtained as the CDF evaluated at the transormation pa-
rameters (ΛΛΛ) for the GERGM and Cauchy GLM. Then cycles

(a) is
∑

i<j<k X̂ijX̂jkX̂ki + X̂ikX̂kjX̂ji, and dyad reciproca-

tion (b) is
∑

i<j X̂ijX̂ji. Horizontal grey bars are placed at
the statistic computed on the estimated intensity network.

including endogenous dependence terms for clustering,
dyadic reciprocity, generalized reciprocity (i.e., cycling –
the degree to which change in flows to and from a state
are correlated[23]), state level attraction, and state level
repellence.

Figure 2 shows the estimates from our GERGM as well
as estimates from a Cauchy GLM. A Wald test suggests
the restriction of the dependence terms to zero in the
regression model is inappropriate and that the GERGM
provides a better fit to the data (Wald statistic = 119.19
on 5 degrees of freedom, statistically significant at the
0.001 level). The statistically significant effects for the
network parameters indicate that (a) there are clustering

effects in the network, (b) migration to states repels fur-
ther migration, and (c) increases in migration flows from
a state are not offset by increases in flows to that state.
We also find a decrease in the number of people leaving
warm states, a decrease in migration to states that expe-
rienced a substantial increase in population in the previ-
ous year, and evidence of an increase in migration away
from states experiencing increases in unemployment.

The superior performance of the GERGM relative to
the Cauchy regression is further depicted in figure 3,
which gives the predicted and observed network-level
reciprocity and cycling measures from the GERGM and
Cauchy GLM. This figure shows that the regression does
not adequately fit the lack of reciprocity in the migration
network. Theoretically, it is expected that a network of
change in migration would exhibit anti-reciprocity and
anti-cycling. If a locale is experienceing a spike in mi-
gration to other places, that is likely indicative of some
undesireable feature of said locale. This anti-reciprocal
feature of the migration network cannot be integrated
into the conventional regression modeling framework.

Our GERGM model greatly expands the scope of net-
works which can be modeled within the ERGM frame-
work. We used this technology to analyze a real-world
network and produce insights that could not be produced
without the GERGM. Our general model represents a
major advance in the statistical analysis of networks, and
we expect it to become a common tool in disciplines span-
ning the sciences.

The authors thank James Fowler and Peter Mucha for
useful comments. This work was supported in part by
a grant from the University of Massachusetts Amherst
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