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Abstract

Semi-supervised learning (SSL) is gaining popularity as
it reduces cost of machine learning (ML) by training high
performance models using unlabeled data. In this paper, we
reveal that the key feature of SSL, i.e., learning from (non-
inspected) unlabeled data, exposes SSL to strong poisoning
attacks that can significantly damage its security. Poisoning
is a long-standing problem in conventional supervised ML,
but we argue that, as SSL relies on non-inspected unlabeled
data, poisoning poses a more significant threat to SSL.

We demonstrate this by designing a backdoor poisoning
attack on SSL that can be conducted by a weak adversary
with no knowledge of the target SSL pipeline. This is un-
like prior poisoning attacks on supervised ML that assume
strong adversaries with impractical capabilities. We show
that by poisoning only 0.2% of the unlabeled training data,
our (weak) adversary can successfully cause misclassifica-
tion on more than 80% of test inputs (when they contain
the backdoor trigger). Our attack remains effective across
different benchmark datasets and SSL algorithms, and even
circumvents state-of-the-art defenses against backdoor at-
tacks. Our work raises significant concerns about the secu-
rity of SSL in real-world security critical applications.

1. Introduction
Machine learning (ML) models perform better with in-

creased amounts of training data [13, 12]. However, con-
ventional supervised ML requires labeling large amounts of
training data, an expensive [11] and error prone [31, 26]
process that makes it prohibitively expensive, especially
with today’s exploding training data sizes.

Semi-supervised learning (SSL) addresses this major
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challenge by significantly reducing the need for labeled
training data: SSL uses a combination of a small, high-
quality labeled data (expensive data) with a large, low-
quality unlabeled data (cheap data) to train models. For
instance, the FixMatch [40] SSL algorithm combines only
40 labeled with 50k unlabeled data to achieve a 90% ac-
curacy on CIFAR10. Training SSL involves two loss func-
tions: a supervised loss (e.g., cross-entropy [30] over true
labels) on labeled training data and an unsupervised loss
(e.g., cross-entropy over pseudo-labels [22]) on unlabeled
training data. Different SSL algorithms primarily differ in
terms of how they compute their unsupervised losses.

SSL has gained popularity in both academia [52, 46, 47]
and industry [40, 41, 3, 2], as recent SSL algorithms offer
state-of-the-art performances comparable or even superior
to supervised techniques—but with no need of large well-
inspected labeled data. For instance, due to their effective
use of unlabeled data, with less than 10% of training data
labeled, FixMatch [40] outperforms supervised ML.
Unlabeled data enables poisoning by weak adversaries:
Multiple researches have demonstrated the data poisoning
threat to supervised ML [18, 28, 34, 36, 50, 44, 38]. How-
ever, as the training data in supervised ML undergo an ex-
tensive and careful inspection, these attacks assume strong
adversaries with the knowledge of model parameters [28],
training data [44, 4, 29], its distribution [50], or the ML al-
gorithm. Such strong adversaries are important to evaluate
worse-case security of a system, but are irrelevant in prac-
tice [38]. On the other hand, the key feature of SSL that
makes it attractive to real-world applications is its ability to
leverage large amounts of—raw, non-inspected—unlabeled
data, e.g., the data scraped off the Internet. We argue that
the use of non-inspected data by SSL presents a unique
threat to its security, as it allows even the most naive
adversaries (with no knowledge of training algorithm,
data, etc.) to poison SSL models by simply fabricating
malicious unlabeled data. Unfortunately, this ostensible



threat is largely unexplored in the SSL literature.
To address this gap, in this paper, we take the first step

towards understanding this threat by studying the possibil-
ity of backdoor attacks against SSL in real-world settings.
Backdoor attacks aim to install a backdoor function in the
target model, such that the backdoored target model will
misclassify any test input to the adversary chosen target
class when patched with a specific backdoor trigger, but
will correctly classify test inputs without the trigger.
Existing backdoor attacks fail on SSL: There exist numer-
ous backdoor attacks in the literature, however, except one
attack—DeHiB [48], all of the prior attacks consider super-
vised ML. Our preliminary evaluations show that all of the
existing state-of-the-art (SOTA) attacks, including DeHiB,
completely fail against SSL under our realistic threat model
(Section 3.1). Hence, to learn from these failures, we first
systematically evaluate five SOTA backdoor attacks from
three categories against five SOTA SSL algorithms, under
our practical, unlabeled data poisoning threat model.

Our systematic evaluation leads to the following three
major lessons that not only guide our attack design, but
can be useful building blocks for (future) backdoor attacks
against SSL: (1) Backdoor attacks on SSL should be clean-
label style attacks, i.e., poisoning data should be selected
from the distribution of target class yt; (2) Backdoor trig-
gers should be of the same size as the poisoning sample, to
circumvent strong augmentations, e.g., cutout [15], that all
modern SSL algorithms use; (3) Backdoor triggers should
be resistant to noise and with repetitive patterns1 to with-
stand large amounts of random noises due to strong aug-
mentations, e.g., RandAugment [10], in SSL.
Our SSL-tailored backdoor method: The high-level intu-
ition behind our backdoor attack is as follows. All modern
SSL algorithms learn via a self-feedback mechanism, called
pseudo-labeling, i.e., if current state of target model fθ has
high confidence prediction ỹ for an unlabeled sample x,
then they use (x, ỹ) as a labeled sample for further training.
We exploit pseudo-labeling and design a clean-label attack
that poisons unlabeled data only from the distribution of yt.
Our attack patiently waits for fθ to correctly label a poison-
ing sample (x + T ) as yt, where T is our pre-determined
backdoor trigger. As fθ trains further on ((x+ T ), yt), our
attack forces fθ to associate features of our simple trigger
T , instead of the complex features of x, with yt, thereby
installing the backdoor in the target model.

Note that, we consider the most challenging setting for
designing attacks with the least capable and knowledgeable
data poisoning adversary. Generally, trigger generation for
data poisoning backdoor attacks is formalized as a bi-level
optimization problem [29], however such attacks are well-
known to be very expensive, and yet ineffective [29, 38].

1Repetitive pixel patterns are the patterns on which if we zoom in on
any part, we get similar pattern. For examples, check Figures 1 and 10.

Instead, our lessons lead us to a simple yet effective static,
repetitive grid pattern backdoor trigger (Figure 2).
Evaluations: We demonstrate the strength of our attack via
an extensive evaluation against five SOTA SSL and one su-
pervised ML algorithm, using four benchmark image clas-
sification tasks commonly used in the SSL literature. We
note that our attack significantly outperforms prior attacks
from both SSL and supervised ML literature.

We measure success of our attacks using ASR metric:
ASR measures the % of test inputs from non-target classes
that the backdoored model classifies to the target class when
patched with backdoor trigger. For the most combinations
of algorithms and datasets, our attacks achieve high at-
tack success rates (ASRs) (>80%), while poisoning just
0.2% of entire training data. For instance, our attacks
have more than 90% ASR against CIFAR100 and more
than 80% ASR against CIFAR10. For SVHN and STL10,
our attack has more than 80% ASR with two exceptions
each. While, under our practical threat model, DeHib at-
tack achieves 0% ASR even with 20× more poisoning data.
Through a systematic experiment design in Section 5.1.4,
we show that our intuition aligns with the dynamics of our
attacks and justify their strength. Our attack is highly
stealthy, as (1) according to L∞-norm metric commonly
used [50] for stealth measurement, it minimally perturbs
the poisoning data and (2) it produces backdoored models
which have high accuracy (close to non-backdoored mod-
els) on non-backdoored test inputs. We perform compre-
hensive ablation study (Section 5.2) to demonstrate the high
efficacy of our attacks as we vary (1) size of labeled data,
(2) backdoor target class, and (3) size of poisoning data.

Finally, we show that our attack remains highly ef-
fective even when SSL is paired individually with five
SOTA defenses against backdoor attacks that are agnostic
to learning algorithms. To defend against such unlabeled
data poisoning, we argue for SSL to depart from its philos-
ophy of not inspecting unlabeled training data, and instead,
pre-process/inspect the unlabeled data and/or design SSL
algorithms that are robust-by-design to such poisoning.

2. Preliminaries and Related Work

2.1. Semi-supervised Learning (SSL)

Supervised ML requires completely labeled data, Dl,
which can be prohibitively expensive due to expensive man-
ual labelling involved. SSL reduces this cost by using very
few labeled Dl and plenty of unlabeled data Du. SSL uses
a convex combination of a supervised loss Ll on Dl and
an unsupervised loss Lu on Du. Modern state-of-the-art
SSL algorithms rely on two key building blocks: pseudo-
labeling [22] and consistency regularization [14, 35, 21].

Pseudo-labeling uses the current model, fθ, to obtain ar-
tificial pseudo-labels for Du and only retains the data on



which fθ has high confidence. Assume qb = fθ(y|ub)
are the predictions of fθ on the batch ub of unlabeled
data. Then pseudo-labeling loss can be formalized as:
1

|ub|
∑|ub|

b=1 1(max(qb) ≥ τ)H(q̂b, qb); q̂b = argmax(qb),
H(.) is cross-entropy and τ is confidence threshold.

Consistency regularization trains fθ to output similar
predictions for perturbed versions of the same input. It uses
stochastic augmentations a(xu) to perturb an unlabeled
sample xu and forces fθ to have similar outputs on multi-
ple a(xu)’s using the following loss:

∑|ub|
b=1 ∥fθ(y|a(ub))−

fθ(y|a(ub))∥22, where a(.) produces different output every
time it is applied to a batch ub of unlabeled data. Below we
describe the five SOTA SSL algorithms we consider in this
work.
(1) MixMatch [3] combines various prior semi-supervised
learning techniques. For an unlabeled sample, MixMatch
generates K weakly augmented versions of the unlabeled
sample, computes outputs of the current model fθ for the K
versions, averages them, and sharpens the average predic-
tion by raising all its probabilities by a power of 1/temper-
ature and re-normalizing; it uses the sharpened prediction
as the label of the unlabeled sample. Finally, it uses mixup
regularization [53] on the combination of labeled and unla-
beled data and trains the model using cross-entropy loss.
(2) Unsupervised data augmentation (UDA) [46] shows
significant improvements in semi-supervised performances
by just replacing the simple weak augmentations of
MixMatch with a strong augmentation called Randaug-
ment [10]. In an iteration, Randaugment randomly selects
a few augmentations from a large set of augmentations and
applies them to images.
(3) ReMixMatch [3] builds on MixMatch by making mul-
tiple modifications, including 1) it replaces the simple weak
augmentation in MixMatch with Autoagument [9], 2) it
uses augmentation anchoring to improve consistency regu-
larization, i.e., it uses the prediction on a weakly augmented
version of unlabeled sample as the target prediction for a
strongly augmented version of the unlabeled sample, and
3) it uses distribution alignment, i.e., it normalizes the new
model predictions on unlabeled data using the running av-
erage of model predictions on unlabeled data. This signifi-
cantly boosts the performance of resulting model.
(4) FixMatch [40] simplifies the complex ReMixMatch
algorithm by proposing to use a combination of Pseudo-
labeling and consistency regularization based on augmen-
tation anchoring (discussed above). FixMatch significantly
improves semi-supervised algorithms, especially in the low
labeled data regimes.
(5) FlexMatch [52] proposes curriculum pseudo labelling
(CPL) approach to leverage unlabeled data according to
model’s learning status. The main idea behind CPL is to
flexibly adjust the thresholds used for pseudo-labeling for
different classes at each training iteration in order to select

more information unlabeled data and their pseudo-labels.
CPL can be combined with other algorithms, e.g., UDA.

2.2. Backdoor Attacks

A backdoor adversary aims to implant a backdoor func-
tionality into a target model. That is, given an input (x, y∗)
with true label y∗, the backdoored target model f b

θ should
output an adversary-desired backdoor target label yt for
the input patched with a pre-specified backdoor trigger T ,
but it should output the correct label for the benign in-
put, i.e., f b

θ (x + T ) 7→ yt and f b
θ (x) 7→ y∗. There are

two major types of backdoor attacks: (1) dirty-label at-
tacks [19, 7, 36, 51, 33, 23] that poison both the features
x and labels y∗ of benign, labeled data to obtain poisoning
data Dp. (2) On the other hand, clean-label attacks obtain
Dp by poisoning only the features x of benign data.

Backdoor attacks on SSL, unfortunately, have not re-
ceived significant attention from the scientific community.
[48, 49, 16] study backdoor attacks against SSL. However,
all of these attacks assume access to Dl, the labeled train-
ing data of SSL. This assumption renders their applicability
questionable in realistic settings. For clarity of presentation,
we discuss the details of these attacks in Appendix A.1,
where we demonstrate (Table 2) and justify why these at-
tacks fail to backdoor SSL.

3. Our Backdoor Attack Methodology
We first discuss threat model of our attack, followed by

our intuition behind backdoor attacks on SSL. Next, we
note that, effectively backdooring semi-supervised learning
(SSL) does not need a new backdoor attack, but requires
careful adoption of existing backdoor attacks. We discuss
three major lessons learned from systematically evaluating
SOTA attacks under our threat model (Section 3.1). Finally,
we detail our SOTA backdoor attack based on our intuition
and the lessons learned.

3.1. Threat Model

We consider a victim model trainer who collects data
from multiple, potentially untrusted sources to train a ML
model using SSL for a classification task with C classes.
Adversary’s goal: A backdoor adversary aims to install
a backdoor function in the victim’s target model. We de-
note the models without (benign) and with backdoor by f b

θ

and fθ, respectively. Adversary’s backdoor goal is to force
f b
θ to incorrectly classify all the test inputs from non-target

classes to the adversary-desired target class yt, when they
are patched with a pre-specified backdoor trigger, T . Ad-
versary’s stealth goal aims that f b

θ should correctly classify
all the benign test inputs, i.e., any input without T .
Adversary’s knowledge: As discussed in Section 1, we
consider the most naive, real-world adversary with mini-
mum knowledge of the SSL pipeline. More specifically,



we assume that the adversary has no knowledge of the la-
beled or unlabeled training data and does not posses any
data from true distribution; they just know the classifica-
tion task, i.e., CIFAR10 or SVHN. Our adversary knows
the details of the target SSL algorithm, but does not know
model architecture, e.g., ResNet or VGG, i.e., our attacks
are model architecture agnostic.
Adversary’s capabilities: Due to our emphasis on prac-
ticality of our threat model, we consider a data poisoning
adversary [38]. Specifically, our adversary can poison only
the unlabeled data of SSL pipeline, and cannot poison or
even access the model, code or the labeled data of SSL.

3.2. Intuition behind our backdoor attack

For brevity, we discuss our intuition for FixMatch [40],
but it applies to any SSL algorithms that use pseudo-
labeling and consistency regularization (Section 2.1).

As explained in Section 2.1, FixMatch trains parameters
θ to learn a function fθ from the labeled data Dl and assigns
a pseudo-label ŷ to an unlabeled sample x ∈ Du. Then it
further trains θ using (x, ŷ) to improve fθ. As the training
progresses, the confidence of fθ on the correct label of x
increases which leads to better pseudo-labeling of Du and
further improvements in the accuracy of fθ. In other words,
FixMatch learns via a self-feedback mechanism.

Recall that, our realistic data poisoning adversary cannot
alter either the SSL training pipeline or the well-inspected
labeled training data Dl. Now, the first part of our intu-
ition is that our attacks should be of clean-label type, i.e.,
we select unlabeled data Xyt

from the target class, yt,
and patch it with backdoor trigger T to obtain Xp, i.e.,
Xp = Xyt

+ T ; next section demonstrates the necessity
of this condition. The second part of our intuition is that
in initial part of training, FixMatch will assign the desired
pseudo-labels yt to Xp due to the original features Xyt

of
Xp. However, due to the presence of backdoor trigger, T ,
on all Xps, the model will be forced to eventually learn a
much simpler task of associating T to yt.

To further understand this, consider three benign sam-
ples xi∈{1,2,3} with target class yt as their true label. The
adversary adds a trigger T to these samples to obtain Xp:
{xi∈{1,2,3} + T} and inserts Xp in Du. Note that, initially
during training, FixMatch learns the association fθ : X 7→
Y between feature and label spaces only through Dl. And as
our threat model assumes that Dl is benign (not poisoned),
initially FixMatch focuses only on the benign features of
Xp, i.e., on xi∈{1,2,3} and assigns the correct label yt to
all Xp samples. This in turn forces FixMatch to learn from
(xi∈{1,2,3} + T, yt). As T is present in all Xp samples,
FixMatch incorrectly learns the simpler task of associat-
ing the static trigger T with yt, instead of the difficult task
of associating the complex and dynamic benign features of
xi∈{1,2,3} with yt; we very our intuition in Section 5.1.4.

Trigger
Benign sample from


target class
Poisoning


sample

Figure 1: Our backdoor trigger and a poisoning sample.

Pixel gap
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Figure 2: Our backdoor trigger has three parameters: pixel inten-
sity α, pixel gap g, and pixel width w. For presentation clarity,
we use high pixel intensity here, but in experiments we use low
intensities to ensure attack stealth.

3.3. Lessons from systematic evaluation of existing
backdoor attacks against SSL

In Table 1, we categorize existing SOTA attacks on su-
pervised ML and SSL in three types: dirty label, clean la-
bel small trigger and clean label adversarial samples. We
evaluate representative attacks from each category and pro-
vide justification for their failure against SSL, and the cor-
responding lesson that will guide future attack designs on
SSL. Due to space limit, we present the key lessons here
and defer detailed discussions to Appendix A.
Lesson-1: Backdoor attacks against semi-supervised
learning should be clean-label type, i.e., the poisoning
samples should be from the backdoor target class. With-
out this condition, model will be forced to learn to associate
T with different classes (i.e., original classes of poisoning
data Xp), and effectively, model will simply ignore T .
Lesson-2: The trigger should have same size as the entire
sample (images in our case), to ensure that all the aug-
mented instances of a poisoning sample contain majority
of the trigger. This is necessary due to augmentations in
SSL that occlude part of an image, e.g., cutout and cutmix,
which all the modern SOTA SSL algorithms use.
Lesson-3: The trigger should be noise-resistant and with a
repetitive pattern.2 This is necessary, again, to circumvent
the occluding augmentations described above.

We believe that the above lessons give the minimum con-
straints to design backdoor attacks on SSL. But, they need
not be exhaustive and may need modifications, e.g., based
on different threat models and SSL algorithms.

2Repetitive pixel patterns are the patterns on which if we zoom in on
any part, we get similar pattern. For examples, check Figures 1 and 10.



Table 1: The left column shows types of backdoor attacks based on specific characteristics, middle column lists existing
attacks of each type. Right-most column presents lessons we learn from evaluating one/two representative attacks (in bold)
of each type.

Attack characteristic/ type Existing attacks of given type Lesson from evaluations
Dirty label DeHiB [48], DL-Badnets [18],

DL-Blend [7], Facehack [36]
Attack should be a clean-label attack, i.e.,

poisoning samples should be from
backdoor target class.

Clean-label small trigger CL-Badnets [50], CL-Blend [7] Trigger should span the entire
sample/image to avoid cropping/covering

by strong augmentations.
Clean-label adversarial samples Narcissus [50], Label consistent [44],

non-repeating trigger patterns,
HTBA [34], SAA [42],

Embedding [54]

Trigger should be noise-resistant and its
pattern should be repetitive so that even a

part of trigger can install a backdoor.

Table 2: Impacts of existing backdoor attacks (Section 2.2) on various semi-supervised algorithms for CIFAR10 data. We
poison 0.2% (100 samples) of all the training data. DeHib∗ is the original attack with the knowledge of labeled training data
Dl while DeHib is the attack without the knowledge of Dl.

Algorithm DeHiB∗ DeHiB CL-Badnets LC Narcissus
ASR (%) ASR (%) ASR (%) ASR (%) ASR (%)

Mixmatch [3] 22.0 1.0 9.1 1.1 2.2
Remixmatch [2] 10.9 0.9 0.0 0.0 0.0

UDA [46] 21.2 1.2 5.1 0.0 0.0
Fixmatch [40] 35.8 0.9 10.2 0.1 1.3
Flexmatch [52] 16.9 1.2 9.1 0.1 1.1

3.4. Our State-of-the-art backdoor attack

Based on our intuition and the three lessons detailed
above, we develop a clean-label style backdoor attack using
a specific static trigger pattern. Figure 1 depicts our static
backdoor trigger and a corresponding poisoning image;
we present more images for CIFAR, SVHN, and STL10
datasets in Figures 14, 15, and 16 in Appendix C. Our back-
door trigger pattern has three parameters: intensity α, gap
g, and width w. α is the intensity of the bright pixels in
the trigger and intensity of the rest of the pixel is 0; g is the
distance between two adjacent set of bright pixels and w is
the width of each set of bright pixels. Note that the size of
our trigger is the same as that of the sample and has a fairly
repetitive pattern, hence it satisfies both Lessons-2 and 3.

To summarize our attack: we select a set of samples from
the target class (to satisfy Lesson-1, poison them by adding
the trigger to them, and inject these poisoned samples into
the unlabeled data. As we will show in Section 5.1.1 (Ta-
ble 3), with poisoning just 0.2% of the entire training data,
this simple backdoor method injects backdoors in SSL mod-
els with close to 90% accuracy.

Finally, it is worth mentioning that, there are many possi-
ble triggers that follow aforementioned lessons, but choice
of our specific trigger is based on various triggers patterns
we investigated in our initial explorations (Figure 10). Fur-
thermore, the choice of our simple yet effective backdoor
attack method is a result of an extensive experimentation
with various attack methods (and not just trigger patterns).
In Appendix C.1, we discuss alternate attack methods we

explored but found them unsuccessful at backdooring SSL.

4. Experimental setup
We evaluate our backdoor attacks using four datasets

(CIFAR10, SVHN, CIFAR100 and STL10) commonly used
to benchmark semi-supervised algorithms. Due to space
limits, we defer the details of datasets, model architectures
and hyperparameters to Appendix B.

4.1. Performance metrics

Clean accuracy (CA) [18] measures the accuracy of a
model on clean test data without any backdoor trigger T .
Backdoored models should have high CA to ensure that the
backdoor attack does not impact their benign functionality
to ensure the attack stealth.
Backdoor attack success rate (ASR) [18] measures the ac-
curacy of a model on the backdoored test data from the non-
target classes patched with T . For a successful backdoor
attack, backdoored model should have high ASR.
Target class accuracy (TA) [50] measures the accuracy of
the clean test data from the target backdoor class which
does not contain any T . For a backdoored model, TA should
be high to ensure the attack stealth.

5. Empirical Results
5.1. Our attacks effectively backdoor SSL

In this section, we demonstrate the superiority of our
backdoor attacks over various baseline attacks in terms of



Table 3: Impacts of backdoor attacks on various semi-supervised (SSL) algorithms (Section 2.1) under the unlabeled data
poisoning threat model (Section 3.1). For all datasets, our attack (Section 3.4) significantly outperforms the baseline backdoor
attack (DeHiB) against SSL and various clean-label attacks against supervised learning (Section 2.2). Best results are in bold.

C
IF

A
R

10

Algorithm No attack p% CL-Badnets Narcissus DeHiB Our attack
CA ASR TA CA ASR TA CA ASR TA CA ASR TA α CA ASR TA

Mixmatch [3] 92.2 0.0 93.5 0.2 92.1 15.3 94.2 91.1 0.0 94.9 91.1 1.4 92.1 30 92.2 96.8 94.6
Remixmatch [2] 91.3 0.0 94.9 0.2 91.0 1.1 95.0 91.3 0.0 95.9 90.8 2.1 94.8 30 90.6 84.3 94.5

UDA [46] 89.5 0.0 97.4 0.1 88.1 8.2 96.9 89.1 1.0 98.6 89.1 1.1 97.2 20 89.6 81.5 96.7
Fixmatch [40] 91.1 0.0 97.5 0.2 91.9 10.1 97.8 91.2 0.0 98.0 90.9 1.1 95.8 20 93.5 88.1 97.6
Flexmatch [52] 94.3 0.0 97.1 0.2 93.9 6.4 97.0 94.1 0.0 98.5 94.2 2.3 97.0 20 93.8 87.9 96.9

SV
H

N

Algorithm No attack p% CL-Badnets Narcissus DeHiB Our attack
CA ASR TA CA ASR TA CA ASR TA CA ASR TA α CA ASR TA

Mixmatch [3] 94.4 0.0 95.4 0.2 94.5 5.4 93.8 94.5 0.0 96.1 94.4 3.2 95.0 30 93.2 83.7 95.8
Remixmatch [2] 87.6 0.0 95.5 0.2 88.0 1.2 95.4 87.1 0.0 95.9 88.1 1.7 95.9 30 87.6 51.1 95.4

UDA [46] 95.0 0.0 96.3 0.2 94.9 1.1 96.0 94.2 0.0 96.0 94.8 1.1 96.6 20 94.9 95.5 95.8
Fixmatch [40] 94.5 0.0 96.3 0.2 94.9 3.1 97.1 94.2 0.0 97.0 94.8 3.2 96.4 20 94.5 97.1 93.9
Flexmatch [52] 85.4 0.0 96.3 0.2 88.9 1.2 96.9 86.1 0.0 96.7 86.8 2.2 96.4 20 83.9 50.1 96.6

ST
L

10

Algorithm No attack p% CL-Badnets Narcissus DeHiB Our attack
CA ASR TA CA ASR TA CA ASR TA CA ASR TA α CA ASR TA

Mixmatch [3] 86.7 0.0 86.3 0.2 86.3 9.2 86.7 87.1 1.1 87.0 86.1 1.1 86.1 40 86.4 86.2 87.9
Remixmatch [2] 91.7 0.0 90.6 0.2 91.2 4.1 90.6 91.9 0.9 91.1 91.3 1.1 91.0 40 91.2 82.2 91.4

UDA [46] 88.1 0.0 77.5 0.2 88.1 5.5 77.1 89.0 0.1 77.9 88.5 1.7 77.4 30 88.6 57.1 80.4
Fixmatch [40] 92.1 0.0 86.1 0.2 92.2 13.1 86.6 92.1 0.0 86.9 92.0 2.2 86.2 30 91.8 92.4 87.3
Flexmatch [52] 88.1 0.0 88.8 0.2 88.1 6.5 88.1 88.4 0.9 88.0 87.8 1.7 87.9 30 87.8 49.8 85.8

C
IF

A
R

10
0 Algorithm No attack p% CL-Badnets Narcissus DeHiB Our attack

CA ASR TA CA ASR TA CA ASR TA CA ASR TA α CA ASR TA
Mixmatch [3] 71.6 0.0 67.2 0.2 71.9 30.1 67.5 72.0 1.5 68.3 72.3 1.1 68.1 30 71.6 92.8 69.0

Remixmatch [2] 73.3 0.0 59.1 0.2 73.3 18.9 59.3 73.2 1.1 60.2 73.2 0.5 59.9 30 73.1 97.1 58.2
Fixmatch [40] 71.3 0.0 49.3 0.2 70.6 22.0 49.8 71.4 1.1 50.1 71.4 2.3 49.8 10 71.1 91.8 48.9

three metrics from Section 4.1. Note that, we poison at
most 0.2% of the entire unlabeled data, which is signifi-
cantly lower than what prior attacks use, e.g., 10% in De-
HiB [48, 49]. Backdoor injection at such low poisoning
percentages is extremely challenging as we aim to backdoor
the entire test data and not just a single sample as in [5].

5.1.1 High attack success rate (ASR)

In Table 3, “p%” column shows poisoning percentage and
ASR columns show the results. Our backdoor attacks out-
perform all the baseline backdoor attacks by very large
margins for all the combinations of datasets and algorithms.
More specifically, for various settings, ASRs of our attacks
are at least 80% more than ASRs of Narcissus and DeHiB
attacks, while they are at least 60% more than clean label
(CL)-Badnets attacks. Due to space limits, we discuss all
the baseline attacks in Appendix A. For UDA + CIFAR10,
ASR is 81.5% with poisoning just a 0.1% of training data.

Narcissus and DeHiB3 attacks achieve close to 0% ASR
for most combinations of datasets and SSL algorithms. As
discussed in Appendix A.3, this is expected because all SSL
algorithms use strong augmentations which easily obfuscate
the dynamic backdoor triggers of these attacks. CL-Badnets
attack exhibits relatively higher ASR performances, which
is due to the static pattern of its triggers. However, the at-
tack’s ASRs remain below 35%, while ASRs of our attacks

3Note that, the original DeHib attack makes an unrealistic assumption,
i.e., access to the labeled portion, Dl, of the training data. Hence, for a fair
comparison, instead of exact Dl, we assume that the attacker has some
labeled data with same distribution as Dl.

exceed 80% in all the cases.

5.1.2 Negligible impact on clean accuracy (CA)

“CA” columns in Table 3 show the results. First note that,
as Table 6 shows, we use significantly more labeled data for
MixMatch than for the other semi-supervised algorithms,
and therefore, for some datasets, MixMatch achieves higher
accuracy than ReMixMatch or FixMatch. Note from Ta-
ble 3 that our attacks are highly stealthy as they reduce CA
by less than 1.5%. Baseline attacks also reduce CA negli-
gibly, but their ASRs are very low. Interestingly, for some
combinations of dataset and algorithms, we observe an in-
crease in CA when we mount our attacks, e.g., for CIFAR10
+ FixMatch, CA increases from 91.1% in the benign setting
to 93.5%, i.e., 2.4% absolute increase. We also observe that
such CA increases generally accompany an increase in the
target class accuracy (TA). This is because our attacks add
a specific trigger to a subset of target class data and give the
model an extra signal to better learn the target class. This
improves the TA, and hence, also increases CA.

5.1.3 Negligible impact on target class accuracy (TA)

“TA” columns in Table 3 show the results. Our attacks re-
main stealthy with respect to TA as well, as they incur neg-
ligible (<3%) reduction in TA. The baseline attacks also do
not reduce TAs, but their ASRs are very low. For STL10 +
FlexMatch, we observe the maximum, 3%, reduction in TA.
This is because the number of samples for a class that Flex-
Match uses during training is inversely proportional to the
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Figure 3: Dynamics of our backdoor attacks: Initially, SSL
assigns the backdoor target class yt as pseudo-labels to poi-
soning data. Then, our attack forces the model to learn sim-
pler task of associating the backdoor trigger to yt.

confidence of the model on that class; the addition of back-
door trigger to the target class data increases the models’
confidences on the target class and reduces the target class
data that FlexMatch uses for training. On the other hand, in
some cases, TA increases as discussed above.

5.1.4 Why and how our attacks work against SSL?

Below, we explain why and how our attack backdoors
SSL. For brevity, we limit our discussions to FixMatch and
ReMixMatch on CIFAR10 data with target class, yt=7, i.e.,
“horse”, but the insights apply to other SSL algorithms.
FixMatch: FixMatch (as discussed in Section 3.2) uses the
current model, fθ and assigns hard pseudo-labels to unla-
beled data, Du, on which fθ has high confidences. Hence,
to understand why and how our attacks work against Fix-
Match, in Figure 3-(left), we plot averages of hard pseudo-
labels of FixMatch on backdoored (poisoning) unlabeled
data, Xp and our attack’s ASRs as SSL progresses. As
training progresses, FixMatch assigns the yt to more and
more of Xp. This forces fθ to shift its objective from learn-
ing the difficult salient features of the target class to learn-
ing much simpler backdoor trigger. Hence, backdoor ASR
increases as the average pseudo-label shifts to yt=7.
ReMixMatch: As detailed in Section 2.1, ReMixMatch av-
erages predictions on a few augmented versions of an x
∈Xp and then uses distribution alignment to compute a pre-
diction vector that it uses as a soft label to train fθ. Hence,
to understand our backdoor attack on ReMixMatch, in Fig-
ure 3-(right), as the training progresses, we plot the average
of fθ’s confidences on yt for Xp, and backdoor ASRs. Ini-
tially ReMixMatch assigns low confidences to yt that is due
to the distribution alignment, which ensures that ReMix-
Match does not assign very high confidence to any single
class. However, note from Figure 3 that, once fθ learns the
salient features of yt from Xp (with yt as true label), fθ
assigns very high confidences to yt. Next, similar to Fix-
Match, fθ is forced to learn to associate trigger with yt.

Table 4: Backdoor attacks’ invisibility as L∞-norm of their
trigger for CIFAR10. Stealthy attacks have small norms.

CL-Badnets Narcissus DeHiB Ours
At train time 255/255 32/255 32/255 30/255
At test time 255/255 32/255 32/255 30/255

Summary: Our backdoor attacks exploit the high perfor-
mance of modern SSL algorithms: As our intuition hy-
pothesized in Section 3.2, once they achieve high confi-
dences on yt, our attack forces fθ to associate the simple
trigger pattern of our attack with the target class, thereby
installing the backdoor.

5.1.5 Additional effectiveness metrics

Visibility of backdoor trigger: The unlabeled data of SSL
pipeline is never inspected, hence we believe that the visi-
bility of our backdoor triggers is not a significant concern.
Nevertheless, following [50], we measure the visibility of
backdoor attack as the L∞-norm of their backdoor trigger
T . The lower the L∞-norm of a trigger, the more stealth-
ier the backdoor attack. Table 4 shows the L∞-norms of T
used for CIFAR10. We note that L∞-norm, i.e., visibility,
of our T is lower than that of all the baseline attacks. For
many combinations of dataset and SSL algorithms, we need
even lower L∞-norm triggers, e.g., to attack CIFAR10 with
FixMatch, UDA and FlexMatch, we use L∞=20/255, while
attack on CIFAR100 with FixMatch uses L∞=10/255.
Efficacy against strong augmentations: In this section, we
show that our attacks not only work against SSL, but gen-
erally perform well against strong augmentations (SA). To
this end, we evaluate CL-Badnets, Narcissus and our attack
against supervised ML (SML) with and without SAs (we
use RandAugment [10]) and provide results in Table 5 for
CIFAR10 and CIFAR100. We poison 0.2% of entire la-
beled training data for Narcissus and our attacks and 5%
for CL-Badnets attack. We note that although CL-Badnets
works well against SML without SAs, it completely fails
when we use SAs. On the other hand, our attack works
well against SML with and without SAs. Interestingly, Nar-
cisuss also works against SML with SAs, but completely
fails against SSL (Section 5.1.1 and Appendix A.3). This
is because, unlike in SSL, in SML, Narcissus already has
the target label for its poisoning data. To summarize, our
static pattern backdoor attack is a general attack against
strong augmentations and can serve as a building block of
backdoor attacks on numerous learning paradigms that use
strong augmentations, e.g., self-supervised learning [6].

5.2. Ablation study

(1) Impact of sizes of labeled training data (Dl): Figure 4
plots ASR, CA and TA for our backdoor attacks when we
vary |Dl|. Due to resource constraints, we experiment with
a subset of combinations from Table 3 and use trigger in-
tensities as reported in Table 3 for the combinations.



Table 5: Efficacy of various backdoor attacks against supervised ML (SML) with and without strong augmentations (SA).

Algorithm
CIFAR10 CIFAR100

CL-Badnets Narcissus Our attack CL-Badnets Narcissus Our attack
CA ASR TA CA ASR TA CA ASR TA CA ASR TA CA ASR TA CA ASR TA

SML 94.7 83.4 95.7 94.6 100.0 96.5 94.5 99.8 95.3 80.2 75.3 79.0 80.1 98.1 86.2 80.2 96.8 90.0
SML + SA 94.4 0.0 96.7 94.4 99.5 96.8 94.4 88.9 94.9 80.4 0.0 76.0 80.0 92.1 84.3 80.2 80.2 89.0
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Figure 4: Impacts of varying labeled training data size, |Dl|,
for CIFAR10 and {FixMatch, ReMixMatch} algorithms.
Upper row shows ASRs and lower row shows CAs and TAs.

We note that ASRs remain above 70% in almost all
cases, however we observe a dataset dependent pattern: in-
creasing |Dl|, ASRs first reduce and then increase for CI-
FAR10, but vice-versa for SVHN (Figure 11). We leave
analyses of this phenomena to future work. For FixMatch,
we observe that ASRs are almost always above 90%. This is
because FixMatch has high TA and uses hard pseudo-labels,
and hence, all poisoning data, Xp, is correctly pseudo-
labeled as the backdoor target class, yt. Consequently, the
model learns to associate the trigger pattern with yt. For CI-
FAR10 + ReMixMatch, we see that TAs are comparable to
FixMatch but ASRs are lower. This is because ReMixMatch
uses multiple regularizations, including mixup [53] that
uses a convex combination of two randomly selected sam-
ples and their labels from training data to train the model,
which reduces the effective trigger intensity and hence re-
duces the ASR. Due to space limits, we defer SVHN results
and their discussion to Appendix C.

(2) Impact of backdoor target class (yt): Figure 5 plots
ASR, CA and TA of our backdoor attacks for different back-
door target classes, yt; poisoning data Xp is 0.2% of the
total training data.
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Figure 5: ASR, CA and TA of our backdoor attacks for dif-
ferent backdoor target classes, yt.

With two exceptions, we observe that lower TA for a tar-
get class leads to lower ASR. For instance, in CIFAR10 with
FixMatch, when yt is 2 and 3, TAs are 72% and 65%, re-
spectively. Due to low TAs, FixMatch assigns yt to smaller
proportions of Xp, which reduces ASRs. Note that, Car-
lini [5] also observed that targeted attacks are more effec-
tive against better performing SSL algorithms. We observe
similar phenomena for CIFAR10 with ReMixMatch and
yt ∈ {3, 5}, and SVHN with FixMatch and yt ∈ {3, 5}.
However, we observe that for some classes, e.g., CIFAR10
with FixMatch and yt ∈ {6, 8}, TAs are high but ASRs
are close to 65%. We suspect that this is because features
of these yts are too simple to learn, and hence, model cor-



0.1 0.15 0.2 0.3 0.4 0.5

20

40

60

80

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

CIFAR10 + FixMatch

Our backdoor attack

0.1 0.15 0.2 0.3 0.4 0.5

82

84

86

88

90

92

94

C
le

an
/

T
ar

ge
t

ac
cu

ra
cy

(%
)

CIFAR10 + FixMatch

0.1 0.15 0.2 0.3 0.4 0.5

55

60

65

70

75

80

85

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

CIFAR10 + ReMixMatch

0.1 0.15 0.2 0.3 0.4 0.5

91

92

93

94

95

C
le

an
/

T
ar

ge
t

ac
cu

ra
cy

(%
)

CIFAR10 + ReMixMatch

CA(Benign model)

CA(Backdoored model)

TA(Benign model)

TA(Backdoored model)

0.1 0.15 0.2 0.3 0.4 0.5

Percentage of poisoning data (%)

60

65

70

75

80

85

90

95

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

SVHN + FixMatch

0.1 0.15 0.2 0.3 0.4 0.5

Percentage of poisoning data (%)

92

93

94

95

96

C
le

an
/

T
ar

ge
t

ac
cu

ra
cy

(%
)

SVHN + FixMatch

Figure 6: Impact of varying the sizes of poisoning data on
ASR, CA and TA of our backdoor attacks.

rectly ignores the backdoor pattern. Finally, we note that for
majority of classes, our attack’s ASRs remain above 60%.
(3) Varying the size of unlabeled poisoning data (Xp):
Figure 6 plots ASR, CA and TA for our backdoor attacks
with varying |Xp|. More specifically, we vary |Xp| ∈
{0.1, 0.15, 0.2, 0.3, 0.4, 0.5}% of the entire training data
size. Here, we use labeled data sizes as in Table 6. For
all three combinations of dataset and SSL algorithms that
we study, we observe that having very small or very large
|Xp| leads to relatively ineffective backdoor attacks. This is
because at low |Xp|, although almost all of the Xp get the
target label, yt, they are not sufficient to install a backdoor
in the target model. While, for large |Xp|, not all of the Xp

samples get yt and some of them get arbitrary labels that are
not yt. This forces model to associate a single trigger pat-
tern with multiple labels and effectively model completely
ignores the trigger, which reduces backdoor ASR.

Throughout our evaluations, we found that our at-
tacks have high performances (ASR>60%) for |Xp| ∈
[0.2, 0.4]% of the entire training data size. Furthermore,
within these ranges, our attacks remain stealthy and do not

significantly impact CA or TA of the backdoored models.

5.3. Defenses against backdoor attacks on SSL

Due to space limits, here we give highlights of our evalu-
ations of efficacy of five existing backdoor defenses against
our attack and defer detailed discussion to Appendix C.2;
Table 7 and Figure 12 in Appendix C.2 show the results.
(1) Fine-tuning (FT) and fine-pruning (FP) both can reduce
ASR of our backdoor attack, however it comes at a signifi-
cant reduction in CA of the resulting models.
(2) Neural attention distillation (NAD) [24] performed best
among the defenses we evaluate: for CIFAR10, NAD re-
duces ASR by 22.1% for FixMatch and by 23% for ReMix-
Match, but it does not perform as well for SVHN. Nonethe-
less, even with NAD, our attack still raises significant con-
cerns as its ASR against NAD is always > 60%.
(3) Strip [17] works well when backdoor ASR is very
high but for moderate ASRs ∈ [80, 90]%, it fails to detect
backdoor. For instance, Strip successfully identifies over
90% of the backdoored test inputs, but it completely fails
against CIFAR10 + FixMatch/ReMixMatch and SVHN +
MixMatch.
(4) Anti-backdoor learning [25] (ABL) completely fails
against SSL, because, SSL training extensively uses strong
augmentations, and hence, the unsupervised loss on poison-
ing unlabeled data remains almost the same as that on be-
nign unlabeled data (Figure 13 in Appendix C.2).
How to defend SSL from unlabeled data poisoning? We
find that some of the SOTA post-processing (FT, FP, NAD,
Strip) or in-processing (ABL) defenses cannot defend SSL
from our attacks. In other words, current SSL practice of
using non-inspected unlabeled training data makes it highly
vulnerable to poisoning. Hence, we argue for SSL to depart
from its philosophy of not at all inspecting its unlabeled
training data and pre-process the unlabeled data to thwart
poisoning attacks. Such pre-processing can be tailored to
our attack, e.g., check for existence of patterns that follow
our three lessons, or check for any abnormal frequency arti-
facts [51]. We leave pursuing this direction to future work.

6. Conclusions

Semi-supervised learning (SSL) allows training on large
unlabeled data without any inspection, thereby significantly
reducing the cost of ML training. Unfortunately, as we
show, this key feature can facilitate strong data poisoning at-
tacks on SSL: a naive adversary, without any knowledge of
training data or model architecture, can poison just 0.2% of
the entire training data to install a strong backdoor function-
ality in SSL models. Our attack remains effective against
various SSL algorithms and benchmark datasets, and even
circumvents state-of-the-art defenses against backdoor at-
tacks.



Note that, in contrast to numerous prior works [37, 48,
50, 44, 7, 4, 5, 29], in this work we considered a much
weaker, hence more realistic, adversary. Due to our weak
adversarial assumptions and simple attack methodology, all
of the existing and future SSL applications can use our at-
tack to measure and enhance their robustness against back-
door poisoning.

Backdoor attacks can have severe consequences in prac-
tice, e.g., gaining unauthorized access to a system [7] or
denying services to minorities [38]. Hence, a major im-
plication of our study is that real-world SSL applications
cannot rely on non-inspected unlabeled data and must pre-
process/inspect unlabeled training data and/or design SSL
algorithms that are robust to unlabeled data poisoning.

Acknowledgements
This work was supported by Sony AI. This works was

also supported by NSF grants 2131910 and 1953786, and by
DARPA under Agreement No. HR00112190125. Approved
for public release; distribution is unlimited.

References
[1] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin

Kwok. Synthesizing robust adversarial examples. In Inter-
national conference on machine learning, pages 284–293.
PMLR, 2018. 13

[2] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Ku-
rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-
match: Semi-supervised learning with distribution matching
and augmentation anchoring. In International Conference on
Learning Representations, 2019. 1, 5, 6

[3] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. Advances in
Neural Information Processing Systems, 32, 2019. 1, 3, 5, 6,
14

[4] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks
against support vector machines. In Proceedings of 29th In-
ternational Conference on Machine Learning, 2012. 1, 10

[5] Nicholas Carlini. Poisoning the unlabeled dataset of {Semi-
Supervised} learning. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1577–1592, 2021. 6, 8, 10, 15,
16

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 7

[7] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn
Song. Targeted backdoor attacks on deep learning systems
using data poisoning. arXiv preprint arXiv:1712.05526,
2017. 3, 5, 10

[8] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of
single-layer networks in unsupervised feature learning. In
Proceedings of the fourteenth international conference on

artificial intelligence and statistics, pages 215–223. JMLR
Workshop and Conference Proceedings, 2011. 15

[9] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:1805.09501, 2018.
3

[10] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 702–703, 2020. 2, 3, 7

[11] Aron Culotta and Andrew McCallum. Reducing labeling ef-
fort for structured prediction tasks. In AAAI, volume 5, pages
746–751, 2005. 1

[12] Jia Deng. A large-scale hierarchical image database. Proc. of
IEEE Computer Vision and Pattern Recognition, 2009, 2009.
1

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[14] Emily Denton, Sam Gross, and Rob Fergus. Semi-supervised
learning with context-conditional generative adversarial net-
works. arXiv preprint arXiv:1611.06430, 2016. 2

[15] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 2, 13

[16] Le Feng, Sheng Li, Zhenxing Qian, and Xinpeng Zhang.
Unlabeled backdoor poisoning in semi-supervised learning.
In 2022 IEEE International Conference on Multimedia and
Expo (ICME), pages 1–6. IEEE, 2022. 3

[17] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. Strip: A defence
against trojan attacks on deep neural networks. In Pro-
ceedings of the 35th Annual Computer Security Applications
Conference, pages 113–125, 2019. 9, 16, 17

[18] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint arXiv:1708.06733, 2017.
1, 5

[19] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth
Garg. Badnets: Evaluating backdooring attacks on deep neu-
ral networks. IEEE Access, 7:47230–47244, 2019. 3, 13

[20] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.
14

[21] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242, 2016.
2

[22] Dong-Hyun Lee et al. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, volume 3, page 896, 2013. 1, 2

[23] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran
He, and Siwei Lyu. Invisible backdoor attack with sample-
specific triggers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 16463–16472,
2021. 3



[24] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Neural attention distillation: Erasing back-
door triggers from deep neural networks. In International
Conference on Learning Representations, 2020. 9, 17

[25] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Anti-backdoor learning: Training clean
models on poisoned data. Advances in Neural Information
Processing Systems, 34:14900–14912, 2021. 9, 17

[26] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao,
Jiebo Luo, and Li-Jia Li. Learning from noisy labels with
distillation. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1910–1918, 2017. 1

[27] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
pruning: Defending against backdooring attacks on deep
neural networks. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 273–294. Springer,
2018. 16

[28] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning
attack on neural networks. In 25th Annual Network And Dis-
tributed System Security Symposium (NDSS 2018). Internet
Soc, 2018. 1
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Figure 7: DeHiB [48] fails because it cannot obtain the tar-
get class as pseudo-labels for its poisoning data.

A. Systematic evaluation of existing backdoor
attacks

Previous works have proposed numerous backdoor at-
tacks under different threat models. But all works, except
DeHiB [48], consider fully-supervised setting. Hence, we
first present a systematic evaluation of existing state-of-the-
art backdoor attacks and explain why they fail in SSL set-
tings. Based on our evaluations, we provide three major
lessons that are fundamental to our attack design and gen-
erally apply to any (future) backdoor attacks against semi-
supervised learning.

We start our evaluations from DeHiB [48], the only exist-
ing backdoor attack on semi-supervised learning, and based
on the lessons learned from this evaluation, we chose the
next type of attacks to evaluate. As we see from Table 1,
each of our lessons applies to multiple backdoor attacks of
a specific type and characteristics. However, for concise-
ness, we evaluate one or two representative attacks from
each type and provide lesson/s that are useful in designing
stronger attacks.

A.1. Attacks should be clean-label attacks

We first evaluate Deep hidden backdoor (DeHiB) [48]
attack. DeHiB poisons only the unlabeled data, Du, but it
assumes a strong, unrealistic adversary who can access the
labeled data, Dl. It first samples some data (X,Y ) from
both target, yt, and non-target, y\t, classes. Then it uses a



model trained on Dl to add universal adversarial perturba-
tion Pt to X such that the perturbed data X + Pt 7→ Xp

is classified as yt; as we only poison Du, we denote poi-
soning data by Xp. Finally, it adds a static trigger T to
the perturbed data Xp. Intuition behind DeHiB is that, due
to Pt, SSL algorithm will assign target class yt as pseudo-
labels to all Xp and force the target model to associate static
trigger T to yt and ignore original features X .

Why does DeHiB fail? Recall from Section 2.1 that all
of state-of-the-art SSL algorithms use various strong aug-
mentations, including, cutout [15], adding various types of
hue [39], horizontal/vertical shifts [43], etc. Next, note
that adversarial perturbations are sensitive to noises [1], i.e.,
even moderate changes in the perturbations render them
ineffective. Hence, in presence of strong augmentations,
adversarial perturbations fail to obtain the backdoor target
class yt as the pseudo-labels for Xp of DeHiB as shown
in Figure 7. Hence, the very fundamental requirement of
DeHiB does not hold in SSL and leads to its failure. The
original DeHiB work reports slightly better results, because
it assumes access to Dl, which our threat model does not
allow. Hence, we use randomly sampled data of size |Dl|
from entire CIFAR10 data to obtain DeHiB’s Pt.

To summarize, adversarial perturbations are sensitive to
noises. Hence, using adversarial samples from non-target
classes as poisoning samples cannot guarantee the desired
pseudo-labeling to yt. Effectively, such attack tries to train
the model to associate the trigger pattern T with multiple
labels, and hence, fails to inject the backdoor functionality.
For the same reason, we also observed that any dirty-label
static trigger attacks completely fail against SSL. Hence,
backdoor attacks on SSL should be clean-label attacks, i.e.,
use poisoning samples Xp from yt, and leverage benign
features of Xp to obtain desired pseudo-labels yt for them.

Lesson-1: Backdoor attacks on semi-supervised learning
should be clean-label style attacks, which sample their
poisoning samples from the backdoor target class.

A.2. Backdoor trigger should span the whole sample

Based on Lesson-1, we choose to evaluate clean-label
attacks. But, we consider small trigger pattern attacks to
emphasize the importance of the trigger sizes towards at-
tack efficacy against semi-supervised learning. In particu-
lar, we evaluate clean-label Badnets (CL-Badnets) [50] at-
tack, which adds a static trigger, e.g., a pixel pattern with
single/multiple squares, to the samples X from the target
class, yt to get poisoning data Xp. It then injects Xp into
the unlabeled training data Du.

Why does CL-Badnets fail? This clean-label style at-
tack ensures that the model assigns yt to all the poison-
ing samples. However, all the semi-supervised algorithms
use a strong augmentation technique called random-crop (or
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Figure 8: Clean-label Badnets [19] obtains the target class
as pseudo-labels for its poisoning data, but cutout augmen-
tation occludes its small trigger and renders it ineffective.

cutout) that randomly crops a part of a sample. Because
of this, the trigger is generally absent in many of the aug-
mented instances of a poisoning sample as shown in Fig-
ure 8. This majorly reduces the impact of this attack as our
results show in Tables 2 and 3.

Lesson-2: To ensure that all the augmented instances of
a poisoning sample contain the backdoor trigger, the trig-
ger should span the entire sample (images in case of our
work).

A.3. Trigger pattern should be noise-resistant and
repetitive

The only attacks that obey the restrictions of Lessons-1
and -2 are the clean-label backdoor attacks on supervised
learning. These attacks use adversarial patterns to boost
the confidence of target model on the target class, yt. Ta-
ble 1 lists recent attacks of this type; we evaluate two state-
of-the-art attacks among them: Narcissus [50] and Label-
consistent (LC) [44].

Narcissus fine-tunes a pre-trained model using data Xt

sampled from yt distribution. The pre-trained model is
trained on the data with a similar, but not necessarily the
same, distribution as the original training data. Then, it
computes adversarial perturbation Pt that minimizes the
loss of the fine-tuned model on Xt. Finally, it selects few
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Figure 9: Narcissus [50] fails because its noise-sensitive
adversarial trigger pattern cannot obtain the target class
as pseudo-labels for its poisoning data, and furthermore,
strong augmentations easily occlude its non-repeating trig-
ger pattern.
data xt ∈ Xt and injects xt + Pt as the poisoning data Xp

into the unlabeled training data Du. On the other hand, LC
attack is very similar to DeHiB. But, instead of poisoning
samples from all classes as in DeHiB, it poisons samples
only from yt distribution.

Why do Narcissus/LC fail? The reason for this is two-
fold: (1) Narcissus ands LC attack use adversarial pertur-
bations Pt as their triggers. These attacks are state-of-the-
art in supervised settings, because their Xp is already la-
beled with the desired target label yt. But, Pt is highly sen-
sitive to noise, and hence, with even weak augmentations
in semi-supervised learning, these perturbations fail to ob-
tain the desired pseudo-labels yt for Xp (Figure 9). (2) As
random-crop augmentation crops a sample, it also crops the
universal adversarial perturbation based Narcissus/LC trig-
gers Pt and renders these attacks ineffective against semi-
supervised learning.

To summarize, the trigger pattern T should be repetitive.
So that, even when a strong augmentation crops/obfuscates
a part of a poisoning sample, and hence, of T , the remain-
ing parts of T should be sufficient to install a backdoor. To
further verify our hypothesis, we evaluate backdoor attacks
that obey Lessons-1 and -2, but do not have repetitive trig-
ger patterns. We present some of these patterns in Figure 10

Table 6: Sizes of labeled data we use for various combi-
nations of datasets and semi-supervised algorithms; unless
specified otherwise, we use these sizes throughout our eval-
uations.

Dataset Algorithm
MixMatch ReMixMatch UDA FixMatch FlexMatch

CIFAR10 4000 100 100 100 100
SVHN 250 250 100 100 100
STL10 3000 1000 1000 1000 1000

CIFAR100 10000 2500 2500 2500 2500

in Appendix C, but as expected, these patterns fail to back-
door SSL.

Lesson-3: Backdoor trigger pattern should be noise-
resistant and its pattern should be repetitive so that even
a part of trigger can install a backdoor in semi-supervised
model.

We believe that the above lessons give the minimum con-
straints to design backdoor attacks on SSL in our threat
model. But, they are not exhaustive and should be modified,
e.g., based on different threat models and SSL algorithms.

B. Missing details of experimental setup
B.1. Datasets and model architectures

We evaluate our backdoor attacks using four datasets
commonly used to benchmark semi-supervised algorithms.
CIFAR10 [20] is a 10-class classification task with 60,000
RGB images (50,000 for training and 10,000 for testing),
each of size 32 × 32 and has 3 channels. CIFAR10 is a class-
balanced dataset, i.e., each of the 10 classes have exactly
6,000 images. We use different sizes of labeled data de-
pending on the algorithm; the sizes are given in Table 6. As
proposed in original works [40, 3], we use the same num-
ber of the labeled samples for each of the 10 classes, i.e.,
for MixMatch (FixMatch) we use 400 (10) labeled data per
class. We use WideResNet with depth of 28 and widening
factor of 2, and 1.47 million parameters.
SVHN [32] is a 10-class classification task with 73,257 im-
ages for training and 26,032 images for testing, each of size
32 × 32 and has 3 channels. Unlike CIFAR10, SVHN is not
class-balanced. Table 6 gives the labeled training data sizes
we use for various semi-supervised algorithms. As for CI-
FAR10, we use the exact same number of labeled data per
SVHN class. For SVHN, we use the same aforementioned
WideResNet.
CIFAR100 [20] is a 100-class classification task with 60,000
RGB images (50,000 for training and 10,000 for testing),
each of size 32 × 32 and has 3 channels; CIFAR100 is class-
balanced. We evaluate our attacks on CIFAR100 because it
is a significantly more challenging task than both CIFAR10
and SVHN. Table 6 shows the sizes of labeled training data.
We use WideResNet model with depth of 28 and widening



factor of 8, and 23.4 million parameters.
STL10 [8] is a 10-class classification task designed specifi-
cally for the research on semi-supervised learning. STL10
has 100,000 unlabeled data and 5,000 labeled data, and it
is class-balanced; each sample is of size 96 × 96 and has
3 channels. Table 6 shows the sizes of labeled training
data we use for training. Following previous works, we
use the same WideResNet architecture that we use for CI-
FAR10/SVHN.

B.2. Details of the hyperparameters of experiments

Training hyperparameters: We run our experiments using
the PyTorch code from TorchSSL repository [45]. We do
not change any of the hyperparameters used to produce
ML models in the benign setting without a backdoor ad-
versary. For the results in Table 3, we run all experiments
for 200,000 iterations and present the median of results of 5
runs for CIFAR10 and SVHN, 3 runs for STL10 and 1 run
of CIFAR100.
Attack hyperparameters: For the baseline DeHiB4 and Nar-
cissus5 attacks, we use the code provided by the authors.
For clean-label Badnets, we use a 4-square trigger shown in
Figure 8 and set the intensity of all pixels in the 4 squares
to 255. For our backdoor attack, we use trigger pattern dis-
cussed in Section 3.4, and unless specified otherwise, use α
values described in Table 3.
Number of SSL iterations for ablation study: Follow-
ing [5], we reduce the number of iterations to 50,000
(for FixMatch) and to 100,000 (for the less expensive
MixMatch and ReMixMatch) for our ablation studies in
Section 5.2, as SSL is computationally very expensive. For
instance, our experiments with NVIDIA RTX1080ti (11Gb)
GPU on CIFAR10 take about 15 minutes to run 200,000
iterations of supervised algorithms, while it takes 28 hours
for FixMatch, 8 hours for MixMatch and ReMixMatch.
Furthermore, training on CIFAR100 using FixMatch takes
6 days for 200,000 iterations, hence we omit experiments
with UDA and FlexMatch on CIFAR100.

C. Missing details of our attack method and
evaluations.

Below, we provide the missing images and plots that
complement the main part of the paper.

• Figure 10 shows different backdoor patterns that obey
Lessons-1 and -2, but do not have repetitive trigger pat-
terns. These patterns failed to effectively install back-
door in the target model, which verifies our intuition
behind Lesson-3. For detailed discussion, please check
Section A.3.

4https://github.com/yanzhicong/DeHiB
5https://github.com/ruoxi-jia-group/Narcissus-

backdoor-attack

ramp pattern sinusoidal pattern circular pattern

Figure 10: Additional trigger patterns that we investigated
while designing our backdoor attacks. Note that ramp and
sinusoidal patterns are somewhat repetitive, i.e., if we zoom
in on any of their parts we get similar pattern, but this is not
the case for ciucular pattern.
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Figure 11: Impacts of varying labeled training data size,
|Dl|, for SVHN dataset and {FixMatch, MixMatch} algo-
rithms. Upper row shows ASRs and lower row shows clean
and target accuracies.

• Figure 11 shows the impact of varying labeled data
sizes |Dl| on ASR, CA and TA. In case of SVHN with
MixMatch, we observe relatively lower ASRs across
various |Dl|’s. Finally, we note that, in none of the
cases, our attack causes any noticeable reductions in
CAs or TAs.

• Figures 14, 15 and 16 show images from, respectively,
CIFAR10, SVHN, and STL10 datasets, when poisoned
with our backdoor triggers with intensity, α, given in
Table 3. For more details about our backdoor trigger,
please check Section 3.4.

https://github.com/yanzhicong/DeHiB
https://github.com/ruoxi-jia-group/Narcissus-backdoor-attack
https://github.com/ruoxi-jia-group/Narcissus-backdoor-attack


C.1. Negative results: Alternate or failed attacks
methods

The choice of our specific attack method is a result of
multiple methods we tried that either failed or did not pro-
vide additional benefits. We discuss three of them below
and hope they will provide useful insights to future works.

C.1.1 Combining Narcissus with our backdoor attack

We designed an attack with trigger pattern that combines
Narcissus trigger and our static pattern trigger. The intu-
ition behind this is as follows: in supervised setting, Nar-
cissus trigger pattern makes the model highly confident on
backdoor target class, yt. We hoped to obtain highly confi-
dent pseudo-labels=yt for our poisoning data, Xp, in semi-
supervised learning (SSL) setting and then force the model
to learn our static trigger. Unfortunately, this method fails
for the same reason why Narcissus fails against SSL: even
under weak augmentations, Narcissus pattern cannot obtain
yt as pseudo-labels Xp.

C.1.2 Duplicating poisoning data

Recall from Section 5.1.4 that for a backdoor attack to suc-
ceed, the semi-supervised algorithm should first assign yt

as pseudo-labels to Xp. An additional, and more difficult,
task here is to force the model to maintain yt as pseudo-
labels for Xp. To achieve this, we make K copies of Xp

and add them to the entire training data, while maintain-
ing the overall percentage of Xp at 0.2%. In many cases,
this strategy succeeds and provides higher ASRs, e.g., CI-
FAR10 and UDA (FlexMatch), duplication achieves 84.3%
(89.1%) ASR as opposed to 81.5% (87.9%) in our attack
method. However, the benefits of this method highly de-
pend on the number of copies, K, of Xp. Unfortunately,
tuning of K renders this method less useful.

C.1.3 Interpolation based attack

Recently, Carlini [5] proposed an interpolation based tar-
geted attack on semi-supervised learning that poisons unla-
beled training data. We design an interpolation based back-
door attack under our threat model (Section 3.1). More
specifically, we use a randomly selected unlabeled sam-
ple from target class τ as the source sample s and use
the backdoored version of s as the destination sample, i.e.,
d = s+ T where T is a static trigger pattern, i.e., similar to
Figure 2 but with high intensity, α. We use linear interpo-
lation to obtain 10 poisoned samples p’s for each s, where
p = β · s + (1 − β) · d, where β takes 10 values ∈ [0, 1].
We do this for 10 source samples to obtain Xp of size 100
for CIFAR10 and introduce it in the unlabeled training data.
Intuition here is that once the model labels s’s correctly the
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Figure 12: Strip [17] defense, with a few exceptions (e.g., SVHN
+ FixMatch), fails to detect our backdoored test inputs.

label will slowly propagate to d and model will learn to as-
sociate T with the yt. This backdoor attack does not achieve
high ASRs. We suspect that this is because, although all Xp

are assigned yt as desired, many of Xp constructed using
lower β values do not contribute to learning the backdoor
task, and the effective Xp reduces significantly.

C.2. Defenses

Prior literature has proposed numerous defenses to mit-
igate backdoor attacks due to their severe consequences.
Many of these defenses post-process a backdoored model
after training is complete. Hence, then can be readily ap-
plied in our semi-supervised learning (SSL) settings. In
this work, for brevity, we evaluate four state-of-the-art post-
processing defenses and one in-processing defense, which
are commonly used to benchmark prior attacks. Table 7
shows the results for CIFAR10 and SVHN datasets with
0.2% of training data poisoned. Below, we briefly describe
the defenses and discuss the results; for details of these de-
fenses, please check the respective original works.

C.2.1 Standard fine-tuning

This defense finetunes the backdoored model using some
available benign labeled data; we finetune using the labeled
training data of SSL algorithm and tune learning rate hyper-
parameter and produce the best results. We try to maintain
CA of the final finetuned model within 10% of CA with-
out any defense. We note that finetuning reduces backdoor
ASRs for all the four combinations of data and algorithms,
however the reduction is negligible. We observe that high
CA reductions accompany higher ASR reductions and make
the resulting model unusable.

C.2.2 Fine-pruning [27]

Fine-pruning first prunes the parameters of the last convolu-
tional layer of a backdoored model, that benign data do not
activate and then finetunes the pruned model using the avail-
able benign labeled data. Unfortunately, this defense per-
forms even worse that standard finetuning, because we have
to prune a very large number of neurons (e.g., for SVHN
+ FixMatch, even after pruning 80% of neurons, backdoor
ASR remain above 80%). This substantially reduces clean



Table 7: Efficacy of state-of-the-art learning-algorithm-agnostic defenses against our backdoor attacks.
Data Algorithm No defense FT FP NAD ABL

CA ASR CA ASR CA ASR CA ASR CA ASR

CIFAR10 FixMatch 93.5 88.1 92.9 81.5 91.7 82.6 88.4 64.0 93.2 89.3
ReMixMatch 90.6 84.3 90.7 76.8 88.9 81.8 87.1 61.3 90.0 86.1

SVHN FixMatch 94.5 97.1 93.4 95.2 95.1 98.1 82.3 92.1 94.0 97.1
MixMatch 93.2 83.7 92.1 79.4 92.8 80.8 84.3 80.4 93.1 84.1

accuracy to the point from where finetuning cannot recover
it.

C.2.3 Neural attention distillation (NAD) [24]

NAD proposes to first finetune a backdoored model to ob-
tain a teacher with relatively lower ASRs. Then, NAD
trains the original backdoored model, i.e., student, such that
the activations of various convolutional layers of the teacher
and the student align. We found that NAD performs the
best among all the defenses we evaluated. It reduces the
ASR by 22.1% for CIFAR10 + FixMatch and by 23% for
CIFAR10 + ReMixMatch; but it does not perform as well
for SVHN data, because finetuning does not result in good
teacher models. Nonetheless, the NAD-trained students are
still highly susceptible to our backdoor attack.

C.2.4 Strip [17]

Unlike above defenses, Strip aims to identify backdoored
test inputs, and not to remove backdoor from the back-
doored model. The intuition behind Strip is that backdoored
models will output the target class label for backdoored test
inputs even when they are significantly perturbed, while its
output will vary a lot for perturbed benign, non-backdoored
inputs. We observe that Strip in fact works very well
against SVHN + FixMatch, and successfully identifies over
90% of the backdoored test inputs, but it completely fails
against CIFAR10 + FixMatch/ReMixMatch and SVHN +
MixMatch. Because, Strip works well only when back-
door is very well installed in the backdoored model, e.g.,
for SVHN + FixMatch this is in fact the case where ASR is
almost 100%, but for the other cases ASRs ∈ [80, 90]%.

C.2.5 Anti-backdoor learning (ABL) [25]

Unlike above post-processing defenses, ABL is an in-
processing defense, i.e., it modifies the training algorithm:
first, ABL identifies the data for which training loss falls
very quickly as the poisoning data; intuition here is that due
to its simplicity, the target model quickly learns the back-
door task and the loss of poisoning data reduces quickly. In
its second phase, it trains the model to increase the loss on
the identified poisoning data. ABL completely fails against
SSL, because, SSL training extensively uses strong aug-
mentations, and hence, the unsupervised loss on poisoning
unlabeled data remains almost the same as that on benign
unlabeled data (Figure 13 in Appendix C). Hence, ABL
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Figure 13: Anti-Backdoor Learning (ABL) defense fails
against our backdoor attacks, because in semi-supervised
learning, unsupervised losses on poisoning and benign data
are very similar. Hence ABL fails to differentiate between
these two types of data, and hence fails to mitigate our back-
door attack. Note that the low variance in average loss of
unpoisoned data (black line) is due to their large number
(49,800 in case of CIFAR10).

cannot differentiate the poisoning data from benign data,
and fails to defend against backdoor attacks.
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Figure 14: CIFAR10 images from its 10 classes before (above two rows) and after (below two rows) adding our backdoor
trigger used to produce results of Table 3.
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Figure 15: SVHN images from its 10 classes before (above two rows) and after (below two rows) adding our backdoor trigger
used to produce results of Table 3.
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Figure 16: STL10 images from its 10 classes before (above two rows) and after (below two rows) adding our backdoor trigger
used to produce results of Table 3.


