
To appear in the IEEE Symposium on Security & Privacy Workshops, 2023

On the Pitfalls of Security Evaluation of
Robust Federated Learning

Momin Ahmad Khan∗⋆, Virat Shejwalkar∗†, Amir Houmansadr†, Fatima M. Anwar⋆

University of Massachusetts Amherst
†{vshejwalkar, amir}@cs.umass.edu, ⋆{makhan, fanwar}@umass.edu

Abstract—Prior literature has demonstrated that Federated
learning (FL) is vulnerable to poisoning attacks that aim to
jeopardize FL performance, and consequently, has introduced
numerous defenses and demonstrated their robustness in various
FL settings. In this work, we closely investigate a largely over-
looked aspect in the robust FL literature, i.e., the experimental
setup used to evaluate the robustness of FL poisoning defenses.
We thoroughly review 50 defense works and highlight several
questionable trends in the experimental setup of FL poisoning
defense papers; we discuss the potential repercussions of such
experimental setups on the key conclusions made by these
works about the robustness of the proposed defenses. As a
representative case study, we also evaluate a recent poisoning
recovery paper from IEEE S&P’23, called FedRecover. Our case
study demonstrates the importance of the experimental setup
decisions (e.g., selecting representative and challenging datasets)
in the validity of the robustness claims; For instance, while
FedRecover performs well for MNIST and FashionMNIST (used
in the original paper), in our experiments it performed poorly
for FEMNIST and CIFAR10.

I. INTRODUCTION

Federated learning (FL) is an emerging learning paradigm
in which data owners (called clients) collaboratively train a
common machine learning model (called the global model)
without sharing their private training data. In FL, a central
server (e.g., a service provider) repeatedly collects model
updates from clients that they compute using their local data,
aggregates the updates using an aggregation rule (AGR), and
finally uses the aggregated update to tune the global model,
which is broadcast to a subset of the clients at the end of
each FL training round. FL is increasingly adopted by various
distributed platforms, in particular by Google’s Gboard [1] for
next word prediction, by Apple’s Siri [54] for automatic speech
recognition, and by WeBank [68] for credit risk predictions.
The threat of poisoning FL: The key feature of FL, i.e.,
collaboration between mutually untrusted clients, e.g., Android
users or competing banks, is also the root of its susceptibility
to a threat known as poisoning: a small fraction of FL clients,
called compromised clients, who are either owned or controlled
by a poisoning adversary, may act maliciously during the FL
training process in order to poison the global model. There are
three major approaches to poisoning FL: targeted, backdoor,
and untargeted poisoning. Backdoor [8], [66] and targeted
attacks [65], [10] aim to misclassify only a small set of

∗The first two authors contributed equally to this work.

inputs with or without specific properties, respectively. While,
untargeted attacks [63], [21] aim to reduce model accuracy on
all the test inputs. For further discussions, please refer to [62].

Depending on the FL setting, poisoning can have significant
impact on the overall utility of FL. On the one hand, as [62]
argues, ultra large-scale FL applications, e.g., Gboard and Siri,
are less susceptible due to the high cost of effective poisoning.
On the other hand, FL can be instrumental in numerous small-
to moderate-scale applications built using popular FL libraries,
e.g., FedML [26], Tensorflow Federated [3], Pytorch [53]. Ad-
versaries can effectively poison such FL settings, e.g., network
level adversaries [61] can hack communication channels to
mount effective poisoning attacks.
Defenses against poisoning in FL: To mitigate the threat
of poisoning in FL, community has investigated numerous
defenses of various types. For example, robust aggregation
rules (AGRs) aim to detect and remove malicious updates
(Multi-krum [11] and Trimmed-mean [79]), certified defenses
aim to provide robustness certificate (CRFL [73]), and others
aim to recover from poisoning (FedRecover [14]). We refer
the readers to [62] for further discussions of defense classes.
Our work: Each of the prior FL defense works claims
robustness to FL poisoning under specific experimental set-
tings (e.g., specific benchmark datasets, target attacks, etc.).
However, upon closer inspection, we find multiple common,
but questionable, trends in their setups and evaluations that
may lead to serious misrepresentation of the claim robustness.
For instance, many defenses use suboptimal and extremely
slow-converging FL algorithms, e.g., FedSGD, to motivate
the need for their new defenses, and many defenses do
not consider adaptive and/or strong state-of-the-art (SOTA)
poisoning attacks. Our work makes the following two concrete
contributions.
(Contribution-1) We thoroughly review the experimental
setup of 50 FL defense works, from the past 5 years, from the
lens of four critical components of robustness evaluation of
defenses against FL poisoning: (1) FL baselines, (2) datasets
used for evaluation, (3) distribution of FL clients’ data, (4)
attacks evaluated against. Our evaluations shed light on
several misleading trends in the experimental setup of
the evaluated FL defense works. For example, we highlight
that, while the community is aware of strong FL poisoning
techniques [63], [21], [75], [9], almost 40% of the defense
papers evaluate only against a subset of naive attacks (ran-



dom Gaussian [11], label flipping [37], sign flip [34], bit
flipping [74]), which are known to perform poorly even under
strong adversarial settings [62], [21], [34], [56]. Similarly, we
find that close to 50% of the defense papers consider client
data to be i.i.d., although FL clients’ data has been known to
be highly heterogeneous since the inception of FL [43].

Along with the review of these works, we use Trimmed-
mean AGR to empirically demonstrate how the sub-optimal or
unrealistic choices of the four aforementioned components can
lead to faulty conclusions about the robustness of FL defenses.
For instance, we show that this defense mechanism can easily
defend against a simple task like MNIST, but fails to defend
properly for more difficult tasks like FEMNIST or CIFAR10:
when training on MNIST using FedAVG + Trimmed-mean,
SOTA Trim attack [21] reduces the accuracy of global model
from 98.7% (without attack) to 96.7% with 20% malicious
clients, but for FEMNIST (CIFAR10) the accuracy reduces
from 82% (82%) to 65% (50%).
(Contribution-2) As a case study, we thoroughly re-evaluate
a recent FL defense work from IEEE S&P’23 called Fe-
dRecover [14]. FedRecover aims to recover a global model
from strong FL poisoning attacks. Our re-evaluations of Fe-
dRecover from the lens of the four aforementioned compo-
nents reveal that: (1) When there are no poisoning attacks
during recovery, FedRecover decreases the accuracy of FL on
complex tasks compared to the case of normal FL training (we
refer to this as train-from-scratch (TFS))—this is not evaluated
in the original paper. For example, for FEMNIST (CIFAR10),
it achieves 79% (61%) accuracy while the accuracy of regular
FL training is 82% (66%). (2) We show that in the presence
of attacks during recovery, FedRecover’s performance further
reduces compared to TFS, e.g., for FEMNIST (CIFAR10),
FedRecover and TFS accuracies are 75% (46%) and 82%
(66%), respectively. (3) FedRecover’s performance is highly
sensitive to the choice of its hyperparameters, e.g., increasing
the correction period from 3 to 5 reduces FedRecover’s ac-
curacy from 81% to 74%, and decreasing the warmup period
from 20 to 10 reduces accuracy from 75% to 72%.

The key observation of our work is that the FL robustness
literature has been building up on several simplistic (and to
some extent, faulty) practices in the setup of its experimental
evaluations. We conclude with several concrete recommen-
dations on the experimental setup of future works on FL
robustness in Section V.

II. BACKGROUND

A. Federated learning (FL)

In FL [28], [43], [31], a service provider, called server,
trains a global model, θg , on the private data of multiple
collaborating clients without directly collecting their data. In
the tth FL round, the server selects n out of total N clients
and shares the most recent global model, i.e., θtg , with them.
Then, a client k uses their local data Dk and computes an
update ∇t

k and shares it with the server. Depending on how
does a client compute their update, FL algorithms can be
broadly divided into FedSGD and FedAvg. In FedSGD, client

computes the update by sampling a subset b of their local
data and computing a gradient of loss ℓ(b; θtg) of the global
model on the subset, i.e., ∇t

k = ∂ℓ(b; θtg)/∂θ
t
g . On the other

hand, in FedAvg, a client k fine-tunes θtg on their local data
using stochastic gradient descent (SGD) for a fixed number
of local epochs E and obtains updated local model θtk. Then,
they compute their as the difference ∇t

k = θtk− θtg and shares
∇t

k with the server. Next, the server computes an aggregate
of all of the client updates using some aggregation rule,
fagg, i.e., using ∇t

agg = fagr(∇t
{k∈[n]}). Finally, the server

updates the global model of the (t + 1)th round using SGD
as θt+1

g ← θtg + η∇t
agg; η is the server’s learning rate.

Practical deployments of FL can be either cross-device or
cross-silo [28]. In cross-device FL, N is very large (from
few thousands to billions) and only a small fraction of them
is chosen in each FL training round, i.e., n ≪ N . Clients
are resource constrained devices such as mobile phones,
smartwatches, IoT devices, etc. While, in cross-silo FL, N
is moderate (up to 100) and all clients are selected in each
round, i.e., n = N . Clients are large corporations, e.g., banks,
schools, hospitals, etc.

B. Brief overview of FL poisoning attacks

There are three major types of FL poisoning [62]: untar-
geted, targeted, and backdoor. The majority of defenses against
FL poisoning aim to defend against untargeted attacks, so our
work only focuses on untargeted poisoning defenses.
FL poisoning threat models. Next, we detail the untargeted
poisoning threat model, i.e., goal, knowledge and capabilities
of the poisoning adversary, we use in this work.
Goal: We consider an untargeted poisoning adversary who
controls m out of N FL clients and aims to manipulate the
global model such that the model will misclassify all (or most)
of the inputs at test time. Unless stated otherwise, we assume
that our adversary controls 20% of total FL clients.1

Knowledge: Following most of the defense works, we assume
that the adversary knows the robust AGR that the server uses.
The adversary has partial knowledge of federated data, i.e.,
the adversary knows local data only of the malicious clients
they control and not of the benign clients.
Capabilities: In terms of capabilities, we consider strong
model poisoning adversary who can directly manipulate the
model updates that the malicious clients share with the server.
In particular, we use two state-of-the-art model poisoning
attacks: NDSS [62] and Trim [21] detailed in Section VII-C.

III. OVERVIEW OF THE EXPERIMENTAL SETUP OF FL
POISONING DEFENSE WORKS

In this section, we review 50 works that propose defenses,
also called robust aggregation rules (AGR), against FL poison-
ing. In particular, we review them from the lens of four critical
components of robustness evaluation setup. We highlight some

1Most defense works assume very high percentages of malicious clients
to demonstrate that their defenses work even in highly adversarial settings.
Hence, although unreasonable in practical FL settings [62], we follow prior
defense works and use 20% malicious clients.



Fed
Avg

Fed
SGD

0

5

10

15

20

25

30

Fr
eq

ue
nc

y

FL Algorithm

MNIST

CIFA
R10

Fas
hion

FEMNIST

CIFA
R100

Purch
ase

0

10

20

30

Dataset

IID
Natu

ral

Diric
hlet

McM
ahan FCJ

Exponential
0

5

10

15

20

Data distribution

Lab
el f

lip

Back
door

Gaussi
an LIE

Sign flip Trim IPM
0

5

10

15

20

Attacks

Figure 1: Frequency of choices of the four key components (FL baseline, dataset, distribution of clients’ data, attacks) of
robustness evaluation setup. In Section III, we discuss impacts of these choices on robustness of FL poisoning defenses.

of the most overlooked aspects of FL robustness evaluations
and show how it can lead to misleading conclusions and/or
false sense of security. These works are listed in Table I. The
four evaluation components are: (1) FL baseline, (2) dataset
used for evaluation, (3) distribution of FL clients’ data, (4)
attacks used for robustness evaluation. Note that, FL is a
complex system with many more components impacting its ro-
bustness [62], e.g., assumptions about the server’s capabilities,
number of clients, type of FL (cross-silo or cross-device), and
even the robustness metric. However, we only focus on the four
aforementioned fundamental components. Figure 1 provides
the frequency of choices of the four components made in the
50 works we review; Table I in Appendix VII-A gives the
detailed classification of each work.

Below, we elaborate on the choices made in the 50 prior
works. Then we showcase how some of the popular choices
can lead to a false sense of security for Trimmed-mean
(TrMean) AGR [79], [74], a classic defense mechanism that
is used as a building block of many advanced AGRs [14],
[82], [63]. TrMean aggregates each dimension of input updates
separately. For jth-dimension, it sorts the values of all updates,
removes m (i.e., the number of compromised clients) of the
largest and smallest values, and computes the average of the
remaining values as the aggregate. Later in Section IV, we
will also thoroughly re-evaluate the robustness of the latest
SOTA defense, FedRecover [14].

Below, we discuss the four components in detail.
Experimental setup: We use four datasets in this work: FEM-
NIST, CIFAR10, MNIST and Fashion-MNIST. Due to space
constraints, we defer complete details to Appendix VII-B.
(1) Choice of baseline FL algorithm: As discussed in
Section II-A, all the FL algorithms can be categorized into
FedSGD and FedAvg types. In FedAvg, clients fine-tune the
global model using their local data for multiple steps as
opposed a single step in FedSGD. Consequently, FedAvg
achieves higher performance, faster convergence and lower
communication than FedSGD, and numerous works have
demonstrated this [43], [30]. Nonetheless, we observe that
about 40% of prior works use FedSGD based slow FL
algorithms for robustness evaluations.
Consequence of the choices: In Figure 2, we plot the accuracy
of FedSGD and FedAvg when combined with TrMean AGR
under benign and adversarial FL settings. For FedSGD, we

match accuracy in recent state-of-the-art defense works [14],
[21], while for FedAvg, we tune hyperparameters to achieve
much higher accuracy and only 5% to 20% of communication
compared to FedSGD. We use Trim attack here.

In the benign setting, FedAvg significantly outperforms
FedSGD in terms of performance, convergence and commu-
nication cost. This also reflects in adversarial setting: FedAvg
is less susceptible to untargeted poisoning, because its faster
convergence leaves significantly less time for adversary to
perform poisoning. These observations apply to all the four
datasets shown in Figure 2.
(2) Choice of dataset: Real-world FL tasks are very challeng-
ing and a long line of research [13], [19] devotes substantial
time to design open-source datasets that resemble real-world
FL datasets. Nonetheless, we observe that most prior works
use MNIST, an extremely simple, and hence, intrinsically
robust task, for robustness evaluation; moreover, 30% of
these works base majority of their conclusions on evaluations
using only the MNIST dataset. For instance, [29], [79], [16],
[69], [34], [40] use MNIST for all evaluations, while [15],
[14], [38] use multiple datasets, but they also draw significant
conclusions based on evaluations that uses only MNIST.

The next two most common datasets, CIFAR10 and
Fashion-MNIST, are relatively more difficult. But they are far
from FL datasets in that they are very well-curated and class-
balanced. Unfortunately, the common ways of distributing
these datasets among FL clients, e.g., in independent and
identical (IID) fashion, makes the resulting FL setting less
representative of real-world FL; we discuss this in more detail
in next section. Finally, FEMNIST [13], a real-world FL
dataset, is at the fourth place, and just 20% of the works use
it for evaluations.
Consequence of the choices: The intrinsic robustness of
MNIST is evident from Figure 2: Trim attack with a very high
(20%) percentage of malicious clients reduces the accuracy
of the MNIST-trained FL model by less than 1%. TrMean
AGR is highly robust when evaluated using MNIST, but this
conclusion does not hold when we evaluate TrMean robustness
using other three datasets.
(3) Choice of data distribution: Prior works use various
strategies to distribute a non-federated dataset, e.g., MNIST or
CIFAR10, among FL clients. These strategies have significant
impacts on robustness of AGRs. For instance, with more



0 200 400 600 800 1000
FL round

20

40

60

80

100
M

od
el

 a
cc

ur
ac

y 
(%

)
MNIST

FedSGD TrMean w/o attack
FedSGD TrMean w/ attack
FedAvg TrMean w/o attack
FedAvg TrMean w/ attack

0 100 200 300 400 500
FL round

20

40

60

80

Fashion-MNIST

0 200 400 600 800 1000
FL round

0

20

40

60

80

FEMNIST

0 200 400 600 800 1000
FL round

20

40

60

80

CIFAR10

Figure 2: Comparison of the robustness of TrMean AGR when used with FedSGD and FedAvg (Section II-A). FedSGD
based algorithms make TrMean more susceptible to poisoning due to their slow convergence which allows the adversary more
time/rounds to poison the global model. We use Trim attack here. Please check Section II-B for details of threat model.

0.1/0.5 0.3/0.4 0.5/0.3 0.7/0.2 0.9/0.1
Distribution parameter (FCJ/Dir)

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 o
f m

od
el

Fashion-MNIST

FCJ No attack
FCJ Trim
FCJ NDSS
Dir No attack
Dir Trim
Dir NDSS

0.1/0.5 0.3/0.4 0.5/0.3 0.7/0.2 0.9/0.1
Distribution parameter (FCJ/Dir)

10

20

30

40

50

60

70

80

CIFAR10

Figure 3: Impact of choice of data distribution strategy and
attack on FedAvg + TrMean: (1) FCJ distribution [21] gen-
erates locally IID datasets which makes TrMean more robust,
while Dirichlet distribution generates more heterogeneous and
hence real-world datasets, hence to stress-test robust AGRs
we suggest using Dirichlet distribution; note that, in both plots
non-iid degree increases from left to right. (2) Ideally defenses
should be evaluated against multiple strong attacks, but many
works neglect state-of-the-art attacks, e.g., [63].

independent and identically distributed (IID) data, detecting
and mitigating the impact of malicious updates becomes easier,
and hence, defending against FL poisoning also becomes
easier. In spite of numerous works [21], [63], [9], [80] already
pointing this out, we observe in Figure 1-(c) that close to 50%
of the works use IID data to evaluate their defenses.

The second most common choice is real distribution, i.e.,
using real-world federated datasets, e.g., FEMNIST where
each sample is already associated with a client. However,
we observe this only in 22% of works that use FEMNIST,
StackOverflow [2] or Shakespeare [13] data. The rest of the
works artificially partition data to create FL clients. We denote
the three most common artificial distributions by FCJ [21],
Dirichlet [8], [58], [45] and McMahan [43].
Consequence of the choices: Figure 3 shows the impact of
different strategies on the robustness of TrMean for Fashion-
MNIST and CIFAR10 datasets. We use the two most popular
synthetic data distribution strategies; FCJ and Dirichlet. By
varying their distribution parameters, we can produce varying
levels of non-IID datasets; for consistency, we use the param-
eters used in prior works [21], [14], [62].

We note that with FCJ distributed dataset, TrMean is

seemingly more robust. This is because FCJ distributes data
in a partially non-IID fashion (Figures 6), i.e., if dataset has
C classes and total number of FL clients in N , then FCJ
distributes data in C clusters in non-IID fashion. But within
each of the C clusters, the data is IID among N

C FL clients.
On the other hand, Dirichlet distributes data such that each

client’s data distribution is different. Hence, we argue that
Dirichlet produces more real-world FL datasets than FCJ. To
justify this argument, we perform statistical analyses of the
FCJ and Dirichlet distributed client datasets and show that FCJ
produces more IID datasets than Dirichlet; due to space limits,
we defer details to Appendix VII-E. Hence, we argue to use
Dirichlet distribution instead of FCJ for robustness evaluations.
(4) Choice of attacks: This is probably the most important
component of the evaluation of the robustness of FL defenses;
Figure 1-(d) shows the frequency of various attacks that prior
works use for robustness evaluation. We note that in-spite of
multiple works introducing strong FL poisoning attacks [63],
[21], [75], [9], almost 40% of the defense papers evaluate
only against a subset of naive attacks (random Gaussian [11],
label flipping [37], sign flip [34], bit flipping [74]), which
are known to perform poorly even under strong adversarial
settings [62], [21], [34], [56]. Ideally defenses should consider
multiple strong poisoning attacks for evaluation, but unfor-
tunately, over 95% of works do not evaluate against SOTA
attacks, e.g., untargeted [63] and backdoor [66].
Consequence of the choices: Figure 3 shows the impact of two
strong model poisoning attacks, Trim [21] and NDSS [63], on
FashionMNIST and CIFAR10 trained using FedAvg. NDSS
attack outperforms Trim attack, especially when the datasets
are more non-IID and resemble real-world FL.

IV. RE-EVALUATING FEDRECOVER

In this section, we showcase our critical evaluation on
FedRecover [14] by re-evaluating it from the lens of the four
components of evaluation setup discussed in Section III. We
have chosen this work only as a representative of the recent
literature on FL poisoning defenses.

A. Introducing FedRecover

FedRecover aims to recover an FL global model that has
been compromised by a poisoning attack. During the original
training phase, at every round t, FedRecover server stores



the model updates ∇k
t of client k and global models θtg , and

uses these as historical information during recovery phase.
The recovery process has broadly three phases.

During the first warmup phase, the server asks the clients
to send their exact updates for the first Tw rounds. During
the second estimation phase, the server estimates the client
updates at each FL round; ∇̂t

k is the estimated update for
client k at round t. It estimates the update by applying L-
BFGS algorithm [49] on the original global model at round t

(θ
t

g), original model update by client k at round t (∇t

k), and the
recovered global model at round t (θ̂tg). The estimated model
update is thus computed as ∇̂k

t = ∇t

k + H̃t
k(θ̂

t
g − θ

t

g), where
H̃t

k(θ̂
t
g − θ

t

g) is the Hessian vector product. To ensure that
the estimated global model θ̂tg remains close to the accurate
global model, the server, after every Tc rounds, asks the clients
to send their exact updates; this is called periodic correction.
Additionally, if any component of a specific client’s estimated
update exceeds a pre-specified abnormality threshold, τ , the
server asks that client to send their exact update. Finally, in
the last fine-tuning phase, for Tf rounds, the server again asks
the clients to send their exact updates, ∇t

k, to improve global
model performance by preventing any estimation errors.

B. Critical re-evaluation of FedRecover’s robustness
Re-evaluation methodology: We test FedRecover from the
lens of the four aforementioned components (Section III); as
we could not obtain FedRecover code from its authors, we
implemented it based on [14]. Specifically, we re-evaluate
FedRecover using choices for baseline FL algorithms, datasets
and data distributions, that are more challenging (FEMNIST
instead of MNIST) and/or more relevant (FedAvg instead of
FedSGD) in practice, compared to choices in [14].

1) Choice of baselines: The original FedRecover work uses
FedSGD to train a CNN on MNIST for 2000 rounds with
mini-batch of 32 and learning rate of 3×10−4. Consequently,
FedRecover reports that Trim attack reduces the accuracy
of Trimmed-mean from 96% to 81%. However, appropriate
baseline, e.g., FedAVG with sufficiently tuned hyperparame-
ters, can achieve much faster convergence: in just 50 rounds
we achieve 98.7% accuracy and under Trim attack, accuracy
reduces to 96.7%. Furthermore, note from Figure 2 that, for
all the datasets, the accuracy of the global model in adversarial
setting is higher (or same) with FedAvg than with FedSGD.

MNIST FashionMNIST FEMNIST CIFAR10
Datasets

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Recovery From Original Training
original post-recovery

(a) No attack in original training.

MNIST FashionMNIST FEMNIST CIFAR10
Datasets

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Recovery From Attack
original post-attack post-recovery

(b) Attack in original training.

Figure 4: Performance of FedRecover without any attack and
with Trim attack during original training.

2) Choice of datasets: FedRecover reports all of its results
(except in Figure 1 of [14] where it uses four datasets)
only on the MNIST data. However, due to its simplicity,
MNIST is intrinsically robust to poisoning (Section III) and
may give a false sense of security. Therefore, below we
evaluate FedRecover under three adversarial settings (A1-3)
using FEMNIST and CIFAR10 which are more challenging
tasks than MNIST and FashionMNIST.
(A1) FedRecover + No attack during original training or
recovery: Figure 4a shows the results. Note that this is a
hypothetical scenario designed to understand how FedRecover
performs in a complete absence of poisoning adversary. We
note that, even in the complete absence of attacks, FedRecover
cannot completely recover for FEMNIST and CIFAR10.
(A2) FedRecover + Trim attack only during original training:
Figure 4b shows the results. Here we assume that none of
the malicious clients participate during recovery phase.2 We
note that FedRecover performs well with MNIST (Fashion-
MNIST) and achieves 91% (72.7%) accuracy compared to
80% (64%) accurate poisoned global model, while the best
achievable accuracy with only the benign FL clients is 92%
(75.2%). However, even without any attack during recovery,
FedRecover cannot recover well for FEMNIST and CIFAR10,
the differences in best achievable and FedRecover accuracies
are 11% and 19%, respectively. We observe that, our results
match that of [14] and we almost completely recover for
MNIST and FashionMNIST, which also validates correctness
of our implementation. However, as expected, due to their
challenging nature, we are unable to perform perfect recov-
ery for FEMNIST and CIFAR10 with reasonable amount of
communication during recovery phase.
(A3) FedRecover + Trim attack during original training
and recovery: This is a more real-world scenario, e.g., when
a detection mechanism that FedRecover uses during original
training is not perfect. Hence, FedRecover’s recovery phase
now includes undetected malicious clients (i.e., false nega-
tives) and excludes incorrectly detected benign clients (i.e.,
false positives). Note that, this evaluation is related to our
fourth component, i.e., choice of attacks, and that FedRecover
considers such an adaptive attack, but evaluates it only for
the simple and intrinsically robust MNIST task. Hence, to
better understand efficacy of FedRecover, we evaluate it using
FEMNIST, a more challenging and real-world FL task.

Figure 5a shows results for FEMNIST when we vary the
FNR and FPR for FEMNIST with Tw = 20 warmup rounds,
periodic correction at every Tc = 10 round, and we fine-
tune the global model for the last Tf = 5 rounds. We
use 300 of total FEMNIST clients and 20% (60) of them
are malicious. We train FEMNIST using FedAvg for 200
rounds; please check Appendix VII-B1 for complete setup.
The results represent the difference in accuracy of FedRecover
and the best achievable accuracy using only the benign clients.
Note that, during recovery, malicious clients (due to non-zero

2Majority of evaluations in FedRecover work make this assumption; only
Figure 8 of [14] assumes presence of malicious clients during recovery.



0.1 0.2 0.3 0.4 0.5
FPR

0.
1

0.
2

0.
3

0.
4

0.
5

FN
R

Variations in FNR and FPR

7.5

10.0

12.5

15.0

17.5

20.0

22.5

(a) Variation in FNR and FPR

1 3 5 7 10
Tc

70

72

74

76

78

80

82

84

Ac
cu

ra
cy

Recovery With Different Tw and Tc

Baseline Tw = 20 Tw = 10

(b) Variation in Tw and Tc

Figure 5: Ablation study of FedRecover for FEMNIST: (a)
FedRecover performance with an imperfect detection during
original training, e.g., with non-zero FNR and FPR, (b)
FedRecover performance with different periodic correction
time Tc, different warmup rounds Tw, and no attack during
recovery. Please refer to Section IV-B3 for more details.

FNR) send malicious Trim attack updates whenever the server
requests exact updates from them. Such malicious exact up-
dates effectively lower the FedRecover accuracy. FedRecover
performs the worst with FNR = FPR = 0.5, i.e., when detector
fails to detect 30 malicious clients while incorrectly detects
120 benign clients as malicious. Compared to the best accuracy
(82%) achievable with only benign clients, FedRecover accu-
racy is 23% less (i.e., 59%), while the accuracy of the poisoned
model is 25% less (i.e., 57%). In short, FedRecover gains just
2% in accuracy. Not only at high FPR/FNR, but even with
low FPR and FNR of 0.1 each, FedRecover recovers poorly
with 8% lower (i.e., 74%) than the best possible accuracy.
Ablation study: We show in Figure 5b that FedRecover’s
performance is very sensitive to the choice of its recovery
parameters such as number of warmup rounds, Tw, and
periodic correction period, Tc. Note that, here we do not mount
any attack during recovery. Higher Tw lowers the estimation
errors in the later rounds, but incurs high computation/com-
munication cost. Hence, decreasing Tw increases lowers the
FedRecover accuracy. Note that due to fast FedAvg algorithm,
we achieve 73% accuracy in Tw = 20, hence in the rest of
180 rounds of recovery, FedRecover gains only 3% in accuracy
with Tc ∈ {5, 7, 10}.

Similar to warmup rounds, periodic correction reduces esti-
mation errors by periodically collecting exact updates from all
clients every Tc rounds. Smaller Tc reduces estimation errors
and increases FedRecover accuracy, but increases communi-
cation. We note that FedRecover performs poorly for Tc > 3.
For Tc = 3 FedRecover performs very well, however note
that at Tc ≤ 3, total number of rounds in which FedRecover
collects exact updates is Tw + Ttotal−Tw−Tf

Tc
+ Tf , which is

85 in our FEMNIST case. Now note in Figure 2 that fast
FedAvg algorithm with 80 benign clients achieves well over
81% accuracy in 85 rounds. Hence, we don’t really need to
use FedRecover if Tc is too low in this particular setting.

3) Choice of data distribution: Dirichlet (Dir) distribution
produces more non-IID datasets compared to FCJ (Section III-
(3)). Below we compare FedRecover’s performance with the
two distributions for FedSGD setting with 500 FL rounds,
batch size 32 and learning rate 0.1; we present three accuracies

(as in original work): train-from-scratch (TFSA), post-attack
(PAA), and FedRecover’s post-recovery (PRA) accuracies.
Note that FedRecover claims to recover to TFSA from PAA.

We do not observe significant differences between the two
distributions, but contrary to the conclusion of the original
work [14], in general FedRecover works well for low degree
of non-IID but performs poorly at higher non-IID degrees.
For example, for low non-IID FCJ-0.3 (for FCJ (Dir) higher
(lower) param values give more non-IID datasets), (TFSA,
PAA, PRA) are (85.23%, 78.68%, 78.25%), while for high
non-IID FCJ-0.7 they are (85.17%, 61.05%, 72.56%). For the
extreme non-IID case of FCJ-1.0, they are (84.6%, 35.83%,
46.9%). That is for FCJ with 0.3, 0.7, 1.0 parameter values,
FedRecover’s PRA is respectively 7%, 12.61% and 37.7%
lower than TFSA. Similarly for lower non-IID case Dir-
0.7, the accuracies are (84.66%, 77.3%, 76.46%) while for
more non-IID case Dir-0.3, they are (85%, 73.71%, 71.69%),
i.e., for Dir with 0.7 and 0.3 parameter values, FedRecover’
recovered accuracy is respectively 8.2% and 13.31% lower
than TFSA. This is because FedRecover uses past global
models to estimate clients updates, and with highly non-IID
FL, the global model is not aligned with client updates very
well. Hence FedRecover computes poor estimates of client
updates which lower its performance.

V. KEY RECOMMENDATIONS

Below we provide four recommendations to future work
on FL poisoning, based on our qualitative (Section III) and
quantitative (Section IV) analysis of prior works.

Recommendation-1: Literature on defenses against FL poi-
soning should use state-of-the-art FL algorithms to motivate
and to evaluate the proposed defenses.

Recommendation-2: Defense evaluations should use FL
tasks with varying difficulties for their robustness evalua-
tions, as using simple and intrinsically robust tasks can lead
to false claims on security.

Recommendation-3: Robustness evaluations should prefer-
ably use real-world FL datasets for evaluations, or at least
synthetic datasets that represent the characteristics of real-
world settings, e.g., high heterogeneity.

Recommendation-4: Robustness evaluations should con-
sider strong state-of-the-art attacks under various (practical)
adversarial settings, including adaptive attacks.

VI. CONCLUSION

In this work, we looked at an often neglected aspect of
the literature on defenses against FL poisoning—experimental
setup they use to measure defenses’ performance. We review
50 defense works and highlight the questionable trends in set-
ting up their experiments. Furthermore, using Trimmed-mean,
a popular defense, we empirically demonstrated how these
trends can misrepresent robustness. Finally, we performed a
thorough re-evaluation of a representative recent FL poisoning



defense, FedRecover, showing how the choice of experimental
setup decisions can influence their robustness claims.

ACKNOWLEDGEMENTS

This work was supported by the NSF grant 2131910.

REFERENCES

[1] “Federated learning: Collaborative machine learning without cen-
tralized training data,” https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html, 2017.

[2] “The stack overflow data,” https://www.kaggle.com/datasets/
stackoverflow/stackoverflow, 2019.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[4] Z. Allen-Zhu, F. Ebrahimian, J. Li, and D. Alistarh, “Byzantine-
resilient non-convex stochastic gradient descent,” arXiv preprint
arXiv:2012.14368, 2020.

[5] S. Andreina, G. A. Marson, H. Möllering, and G. Karame, “Baffle:
Backdoor detection via feedback-based federated learning,” in 2021
IEEE 41st International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2021, pp. 852–863.

[6] M. Andreux, J. O. du Terrail, C. Beguier, and E. W. Tramel, “Siloed
federated learning for multi-centric histopathology datasets,” in Domain
Adaptation and Representation Transfer, and Distributed and Collab-
orative Learning: Second MICCAI Workshop, DART 2020, and First
MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020,
Lima, Peru, October 4–8, 2020, Proceedings 2. Springer, 2020, pp.
129–139.

[7] S. Awan, B. Luo, and F. Li, “Contra: Defending against poisoning attacks
in federated learning,” in Computer Security–ESORICS 2021: 26th
European Symposium on Research in Computer Security, Darmstadt,
Germany, October 4–8, 2021, Proceedings, Part I 26. Springer, 2021,
pp. 455–475.

[8] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in AISTATS, 2020.

[9] M. Baruch, B. Gilad, and Y. Goldberg, “A Little Is Enough: Circum-
venting Defenses For Distributed Learning,” in NeurIPS, 2019.

[10] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” in ICML, 2019.

[11] P. Blanchard, R. Guerraoui, J. Stainer et al., “Machine learning with
adversaries: Byzantine tolerant gradient descent,” in NeurIPS, 2017.

[12] L. Burkhalter, H. Lycklama, A. Viand, N. Küchler, and A. Hith-
nawi, “Rofl: Attestable robustness for secure federated learning,” arXiv
preprint arXiv:2107.03311, 2021.

[13] S. Caldas, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith,
and A. Talwalkar, “LEAF: A benchmark for federated settings,”
arXiv:1812.01097, 2018.

[14] X. Cao, J. Jia, Z. Zhang, and N. Gong, “Fedrecover: Recovering from
poisoning attacks in federated learning using historical information,” in
2023 2023 IEEE Symposium on Security and Privacy (SP) (SP). Los
Alamitos, CA, USA: IEEE Computer Society, may 2023, pp. 326–343.
[Online]. Available: https://arxiv.org/pdf/2210.10936.pdf

[15] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “FLTrust: Byzantine-robust
Federated Learning via Trust Bootstrapping,” in NDSS, 2021.

[16] X. Cao, J. Jia, and N. Z. Gong, “Provably Secure Federated Learning
against Malicious Clients,” in AAAI, 2021.

[17] H. Chang, V. Shejwalkar, R. Shokri, and A. Houmansadr, “Cronus:
Robust and Heterogeneous Collaborative Learning with Black-Box
Knowledge Transfer,” arXiv:1912.11279, 2019.

[18] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “EMNIST: Extend-
ing MNIST to handwritten letters,” in IJCNN, 2017.

[19] J. O. Du Terrail, S.-S. Ayed, E. Cyffers, F. Grimberg, C. He, R. Loeb,
P. Mangold, T. Marchand, O. Marfoq, E. Mushtaq et al., “Flamby:
Datasets and benchmarks for cross-silo federated learning in realistic
healthcare settings,” in NeurIPS, Datasets and Benchmarks Track, 2022.

[20] E. M. El Mhamdi, R. Guerraoui, and S. L. A. Rouault, “Distributed
momentum for byzantine-resilient stochastic gradient descent,” in 9th In-
ternational Conference on Learning Representations (ICLR), no. CONF,
2021.

[21] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local Model Poisoning
Attacks to Byzantine-Robust Federated Learning,” in USENIX, 2020.

[22] S. Fu, C. Xie, B. Li, and Q. Chen, “Attack-resistant federated learning
with residual-based reweighting,” arXiv:1912.11464, 2019.

[23] C. Fung, C. J. Yoon, and I. Beschastnikh, “The limitations of federated
learning in sybil settings,” in RAID, 2020.

[24] E. Gorbunov, S. Horváth, P. Richtárik, and G. Gidel, “Variance reduction
is an antidote to byzantines: Better rates, weaker assumptions and
communication compression as a cherry on the top,” arXiv preprint
arXiv:2206.00529, 2022.

[25] H. Guo, H. Wang, T. Song, Y. Hua, Z. Lv, X. Jin, Z. Xue, R. Ma,
and H. Guan, “Siren: Byzantine-robust federated learning via proactive
alarming,” in Proceedings of the ACM Symposium on Cloud Computing,
2021, pp. 47–60.

[26] C. He, S. Li, J. So, M. Zhang, H. Wang, X. Wang, P. Vepakomma,
A. Singh, H. Qiu, L. Shen, P. Zhao, Y. Kang, Y. Liu, R. Raskar,
Q. Yang, M. Annavaram, and S. Avestimehr, “Fedml: A research library
and benchmark for federated machine learning,” Advances in Neural
Information Processing Systems, Best Paper Award at Federate Learning
Workshop, 2020.

[27] N. M. Jebreel, J. Domingo-Ferrer, D. Sánchez, and A. Blanco-Justicia,
“Defending against the label-flipping attack in federated learning,” arXiv
preprint arXiv:2207.01982, 2022.

[28] P. Kairouz, H. B. McMahan, B. Avent et al., “Advances and open
problems in federated learning,” arXiv:1912.04977, 2019.

[29] S. P. Karimireddy, L. He, and M. Jaggi, “Byzantine-robust learning on
heterogeneous datasets via bucketing,” arXiv preprint arXiv:2006.09365,
2020.

[30] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International Conference on Machine Learning. PMLR, 2020,
pp. 5132–5143.

[31] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” NIPS Workshop on Private Multi-Party ML, 2016.

[32] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009.

[33] Y. LeCun and C. Cortes, “The mnist database of handwritten digits,”
http://yann. lecun. com/exdb/mnist/, 1998.

[34] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
robust stochastic aggregation methods for distributed learning from
heterogeneous datasets,” in AAAI, 2019.

[35] S. Li, Y. Cheng, Y. Liu, W. Wang, and T. Chen, “Abnormal client behav-
ior detection in federated learning,” arXiv preprint arXiv:1910.09933,
2019.

[36] S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen, “Learning to de-
tect malicious clients for robust federated learning,” arXiv preprint
arXiv:2002.00211, 2020.

[37] T. Li, S. Hu, A. Beirami, and V. Smith, “Ditto: Fair and robust federated
learning through personalization,” in ICML, 2021.

[38] Z. Li, L. Liu, J. Zhang, and J. Liu, “Byzantine-robust federated learning
through spatial-temporal analysis of local model updates,” in 2021
IEEE 27th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2021, pp. 372–379.

[39] F. Lin, W. Li, and Q. Ling, “Stochastic alternating direction method
of multipliers for byzantine-robust distributed learning,” arXiv preprint
arXiv:2106.06891, 2021.

[40] Y. Liu, R. Zhao, J. Kang, A. Yassine, D. Niyato, and J. Peng, “Towards
communication-efficient and attack-resistant federated edge learning for
industrial internet of things,” ACM Transactions on Internet Technology
(TOIT), vol. 22, no. 3, pp. 1–22, 2021.

[41] X. Ma, Q. Jiang, M. Shojafar, M. Alazab, S. Kumar, and S. Kumari,
“Disbezant: secure and robust federated learning against byzantine attack
in iot-enabled mts,” IEEE Transactions on Intelligent Transportation
Systems, 2022.

[42] R. A. Mallah, D. Lopez, G. B. Marfo, and B. Farooq, “Untargeted
poisoning attack detection in federated learning via behavior attestation,”
arXiv preprint arXiv:2101.10904, 2021.

[43] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[44] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The Hidden Vulner-
ability of Distributed Learning in Byzantium,” in ICML, 2018.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.kaggle.com/datasets/stackoverflow/stackoverflow
https://www.kaggle.com/datasets/stackoverflow/stackoverflow
https://arxiv.org/pdf/2210.10936.pdf


[45] H. Mozaffari, V. Shejwalkar, and A. Houmansadr, “Frl: Federated rank
learning,” arXiv preprint arXiv:2110.04350, 2021.

[46] ——, “Every vote counts: Ranking-based training of federated learning
to resist poisoning attacks,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023.

[47] L. Nagalapatti and R. Narayanam, “Game of gradients: Mitigating
irrelevant clients in federated learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 10, 2021, pp. 9046–
9054.

[48] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central differential
privacy for robustness and privacy in federated learning,” arXiv preprint
arXiv:2009.03561, 2020.

[49] J. Nocedal, “Updating quasi-newton matrices with limited storage,”
Mathematics of computation, vol. 35, no. 151, pp. 773–782, 1980.

[50] M. S. Ozdayi, M. Kantarcioglu, and Y. R. Gel, “Defending against back-
doors in federated learning with robust learning rate,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 10, 2021,
pp. 9268–9276.

[51] X. Pan, M. Zhang, D. Wu, Q. Xiao, S. Ji, and M. Yang, “Justinian’s
gaavernor: Robust distributed learning with gradient aggregation agent,”
in Proceedings of the 29th USENIX Conference on Security Symposium,
2020, pp. 1641–1658.

[52] J. Park, D.-J. Han, M. Choi, and J. Moon, “Sageflow: Robust federated
learning against both stragglers and adversaries,” Advances in neural
information processing systems, vol. 34, pp. 840–851, 2021.

[53] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An
Imperative Style, High-Performance Deep Learning Library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[54] M. Paulik, M. Seigel, H. Mason et al., “Federated Evaluation and
Tuning for On-Device Personalization: System Design & Applications,”
arXiv:2102.08503, 2021.

[55] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” arXiv:1912.13445, 2019.

[56] S. Praneeth Karimireddy, L. He, and M. Jaggi, “Learning from History
for Byzantine Robust Optimization,” arXiv e-prints, pp. arXiv–2012,
2020.

[57] P. Ranjan, A. Gupta, F. Coro, and S. K. Das, “Securing federated learning
against overwhelming collusive attackers,” in GLOBECOM 2022-2022
IEEE Global Communications Conference. IEEE, 2022, pp. 1448–1453.

[58] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive Federated Optimization,” in
ICLR, 2020.

[59] A. Roy Chowdhury, C. Guo, S. Jha, and L. van der Maaten, “Eiffel:
Ensuring integrity for federated learning,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
2022, pp. 2535–2549.

[60] F. Sattler, K.-R. Müller, T. Wiegand, and W. Samek, “On the byzantine
robustness of clustered federated learning,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 8861–8865.

[61] G. Severi, M. Jagielski, G. Yar, Y. Wang, A. Oprea, and C. Nita-
Rotaru, “Network-level adversaries in federated learning,” arXiv preprint
arXiv:2208.12911, 2022.

[62] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back
to the drawing board: A critical evaluation of poisoning attacks on
production federated learning,” in 2022 2022 IEEE Symposium on
Security and Privacy (SP) (SP). Los Alamitos, CA, USA: IEEE
Computer Society, may 2022, pp. 1117–1134. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00065

[63] V. Shejwalkar and A. Houmansadr, “Manipulating the Byzantine: Opti-
mizing Model Poisoning Attacks and Defenses for Federated Learning,”
in NDSS, 2021.

[64] S. Shen, S. Tople, and P. Saxena, “AUROR: Defending againsts poi-
soning attacks in collaborative deep learning systems,” 2016 Annual
Computer Security Applications Conference, 2016.

[65] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” NeurIPS FL Workshop, 2019.

[66] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, J.-
y. Sohn, K. Lee, and D. Papailiopoulos, “Attack of the tails: Yes, you
really can backdoor federated learning,” in NeurIPS, 2020.

[67] N. Wang, Y. Xiao, Y. Chen, Y. Hu, W. Lou, and Y. T. Hou, “Flare:
defending federated learning against model poisoning attacks via latent
space representations,” in Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security, 2022, pp. 946–
958.

[68] “Utilization of FATE in Risk Management of Credit in Small and Mi-
cro Enterprises,” https://www.fedai.org/cases/utilization-of-fate-in-risk-
management-of-credit-in-small-and-micro-enterprises/, 2019.

[69] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor attacks in
federated learning,” arXiv:2011.01767, 2020.

[70] S. Wu, T. Li, Z. Charles, Y. Xiao, Z. Liu, Z. Xu, and V. Smith, “Motley:
Benchmarking heterogeneity and personalization in federated learning,”
2022.

[71] Z. Wu, Q. Ling, T. Chen, and G. B. Giannakis, “Federated variance-
reduced stochastic gradient descent with robustness to byzantine at-
tacks,” IEEE Transactions on Signal Processing, vol. 68, pp. 4583–4596,
2020.

[72] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[73] C. Xie, M. Chen, P.-Y. Chen, and B. Li, “CRFL: Certifiably Robust
Federated Learning against Backdoor Attacks,” in ICML, 2021.

[74] C. Xie, O. Koyejo, and I. Gupta, “Generalized byzantine-tolerant sgd,”
arXiv:1802.10116, 2018.

[75] C. Xie, S. Koyejo, and I. Gupta, “Fall of empires: Breaking Byzantine-
tolerant SGD by inner product manipulation,” arXiv:1903.03936, 2019.

[76] Y. Xie, W. Zhang, R. Pi, F. Wu, Q. Chen, X. Xie, and S. Kim,
“Optimizing server-side aggregation for robust federated learning via
subspace training,” arXiv preprint arXiv:2211.05554, 2022.

[77] C. Xu, Y. Jia, L. Zhu, C. Zhang, G. Jin, and K. Sharif, “Tdfl: Truth
discovery based byzantine robust federated learning,” IEEE Transactions
on Parallel and Distributed Systems, vol. 33, no. 12, pp. 4835–4848,
2022.

[78] J. Xu, S.-L. Huang, L. Song, and T. Lan, “Signguard: Byzantine-robust
federated learning through collaborative malicious gradient filtering,”
arXiv preprint arXiv:2109.05872, 2021.

[79] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in ICML, 2018.

[80] S. Zawad, A. Ali, P.-Y. Chen, A. Anwar, Y. Zhou, N. Baracaldo, Y. Tian,
and F. Yan, “Curse or redemption? how data heterogeneity affects the
robustness of federated learning,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 35, no. 12, 2021, pp. 10 807–10 814.

[81] K. Zhang, G. Tao, Q. Xu, S. Cheng, S. An, Y. Liu, S. Feng, G. Shen, P.-
Y. Chen, S. Ma et al., “Flip: A provable defense framework for backdoor
mitigation in federated learning,” arXiv preprint arXiv:2210.12873,
2022.

[82] Z. Zhang, X. Cao, J. Jia, and N. Z. Gong, “Fldetector: Defending
federated learning against model poisoning attacks via detecting ma-
licious clients,” in Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2022, pp. 2545–2555.

VII. APPENDIX

A. Methodology we use to classify 50 defense works

We classify 50 works across the following four dimensions:
• FL algorithm: We classify the papers based on one of

the two types of popular FL Algorithms; FedAvg or
FedSGD. Some papers explicitly mention the algorithm/s
they use in setup details. However, for some we need
to carefully check other parts of the paper to decide the
algorithm, e.g., TDFL [77] work does not mention which
FL algorithm they use, but their Algorithms 1 and 2
describing FL used FedAvg, hence we belive they use
FedAvg in their evaluations.

• Datasets: For each paper, we list the datasets it uses
for evaluating the performance of its defense proposed;

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00065
https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/
https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/


these are generally clearly mentioned in setup. The most
common datasets we found are MNIST, CIFAR10, Fash-
ion MNIST, FEMNIST, CIFAR100, and Purchase. But
in the union of datasets used in the 50 works, there are
many more and they are listed in Table I. For presentation
clarity, Table I uses acronyms for the datasets and attacks,
which are listed in Tables II & III.

• Data distribution: We classify a defense based on the
data distribution strategies it uses. The most common
strategies we found are IID, Natural, FCJ, Dirichlet,
McMahan, and Exponential.

• Attacks: For each paper, we list the attack/s it uses to
evaluate its defense, and then we report frequency of
attacks using histogram; most papers clearly mentioned
the attacks they use or the plots in the paper clarified the
attacks used. The popular attacks we found are Label flip,
adding random Gaussian noise, Little-is-enough, Back-
door, Sign Flip, Trim, and Inner Product Manipulation
(IMP).

Note that it is possible for a paper to belong to multiple
categories in each dimension. For instance, This means that
the frequencies in Figure 1 can add up to a number greater than
50. For example, if we add up the frequencies in the attacks
graph we get the number 79. We also note that, some papers
[39], [42], [77] could not be classified for some categories
such as choice of FedAvg or FedSGD. Table I lists all the
papers we classified using above classification method.

B. Experimental setup

Due to space constraints, we provide detailed experimental
setup here.

1) FEMNIST [13], [18]: FEMNIST is a character recog-
nition classification task with 3,400 clients, 62 classes (52
for upper and lower case letters and 10 for digits), and
671,585 grayscale images. Each client has data of their own
handwritten digits or letters. We use 300 randomly selected
clients with their original data in a cross-silo fashion as
FedRecover uses the cross-silo setting in its implementation.
We use the CNN used by [14] and use the Xavier weight
initialization.

Hyperparameters for re-eval: For FEMNIST, we run over
200 epochs with 300 clients. In the attack setting, 60 clients are
malicious. The results in Figure 4 use Tw = 10, Tc = 10, and
Tf = 5. The FL algorithm used here is FedAVG with a local
learning rate of 0.05 and a global learning rate of 1. We keep
the batch size to be 32. The number of local epochs is kept
1. For Figure 5a we vary consider the possibility of benign
clients being misclassified as malicious, or malicious clients
being misclassified as benign so we vary the false negative
and false positive rates between 0.1 and 0.5. For Figure 5b we
vary Tc between 1 and 10, where Tc = 1 means all updates
are exact updates and use 10 and 20 for Tw.

2) CIFAR10 [32]: CIFAR10 is a 10-class classification task
with 60,000 total RGB images, each of size 32 × 32. We
divide all the data among 100 clients using either Dirichlet [58]
or FCJ [21] distributions, which are the two most popular

synthetic strategies to generate FL dataset. We use a Resnet20
model with the CIFAR dataset.

Hyperparameters for re-eval: We run over 100 epochs
with 10 0 clients. In the attack setting, 20 clients are malicious.
The FL algorithm used here is FedAVG with a local learning
rate of 0.01 and a global learning rate of 1. We keep the batch
size to be 16. The number of local epochs is kept 2. The
results in Figure 4 use Tw = 10, Tc = 5, and Tf = 5, and the
fang distribution. Contrary to the rest of the datasets used, we
use Tc = 5, because CIFAR10 was a much more challenging
learning task.

3) MNIST [33]: MNIST is a 10-class digit image classi-
fication dataset, which contains 70,000 grayscale images of
size 28 × 28. We consider 100 FL clients and divide all data
using Dirichlet or FCJ distributions. We use the same CNN as
FEMNIST dataset.

Hyperparameters for re-eval: For MNIST, we run over
2000 epochs with 100 clients, a learning rate of 0.03, and a
batch size of 32. In the attack setting, 20 clients are malicious.
We set Tw = 20, Tc = 10, and Tf = 10. The FL algorithm
used here is FedSGD. The results reported in Figure 4 use the
fang distribution.

4) Fashion-MNIST [72]: Fashion-MNIST is a 10-class
image classification dataset with grayscale images of clothing
of size 28 × 28. It contains 70,000 total images. We consider
100 FL clients and divide all 70,000 images using Dirichlet or
FCJ distributions. For CIFAR10, MNIST and FashionMNIST,
we divide each client’s data in train/test/validation splits in the
ratio of 10 : 1 : 1. We combine clients’ validation data and
use it for validation and hyperparameter tuning, and report
accuracy on test data. We use the same CNN as FEMNIST
dataset.

Hyperparameters for re-eval: We run over 2000 epochs
with 100 clients, a learning rate of 3 × 10−3 3, and a batch
size of 32. In the attack setting, 20 clients are malicious. We
set Tw = 20, Tc = 10, and Tf = 10. The FL algorithm used
here is FedSGD. The results reported in Figure 4 use the fang
distribution.

C. Untargeted poisoning attacks used for evaluation

Trim Attack: We describe the Trim attack and adopt the
description given in [14]: “Fang et al. [21] formulated untar-
geted poisoning attacks to FL as a general framework. Roughly
speaking, the framework aims to craft malicious model updates
that maximize the difference between the aggregated model
updates before and after attack. The framework can be applied
to different aggregation rules. The Trim attack is constructed
based on the Trimmed-mean aggregation rule under the frame-
work, and is also effective for other aggregation rules such as
FedAvg and Median.”
NDSS Attack: We describe the NDSS attack and adopt
the description given in [63]: “The adversary computes a
benign reference aggregate using some benign data samples
she knows; then she computes a malicious perturbation vector,

3We could not achieve the same accuracy reported in [14] using their
reported 3× 10−4 learning rate, hence we use 3× 10−3.



Table I: Classification of 50 defense works across 4 dimensions of evaluation setup; please check Section VII-A for details.

Work Datasets Attacks Data Distribution FL algorith
FLDetector [82] FA,FE,C10 Trim Fang, Natural FedSGD
FedRecover [14] M,FA,P,H Trim Fang FedSGD
Machine Learning with Adversaries [11] M, spambase RGA IID FedSGD
FLTrust [15] M,CHM,C10,H Krum, Trim, LF Fang FedAvg
Byzantine-Robust Distributed Learning [79] M RGA IID FedSGD
Provably Secure Federated Learning against Malicious Clients [16] M Not applicable Fang FedAvg
Learning to Detect Malicious Clients for Robust FL [36] M, FE, S140 SF, AN, BD Natural, McMahan FedAvg
Robust Federated Learning [76] M,FE,C10/100,N20 LF, LIE, Fang Dirichlet, Natural FedAvg
The Hidden Vulnerability of Distributed Learning in Byzantium [44] M, C10 Specific attack IID FedSGD
Sageflow [52] M, FA, C10 SF, LF McMahan FedAvg
Mitigating Irrelevant Clients in FL [47] M LF McMahan FedAvg
Cronus [17] M, C10, P, Svhn LF, LIE IID FedAvg
Can You Really Backdoor Federated Learning? [65] FE BD Natural FedAvg
Generalized Byzantine-tolerant SGD [74] M, C10 BF, LF, LIE IID FedSGD
The Limitations of Federated Learning in Sybil Settings [23] M, VGG, KDD, A LF, BD Each class to a client Both
Ditto [37] FA, FE, CelebA LF, RGA, BD Natural, McMahan FedAvg
Auror [64] M Targeted-LF IID FedSGD
Robust Aggregation for Federated Learning [55] FE,S140,S Specific attacks, RGA Natural FedAvg
CRFL [73] M, FE BD IID FedAvg
FLIP [81] M, FA, C10 BD Dirichlet FedAvg
RoFL [12] FE, C10 BD Natural, Dirichlet FedAvg
Securing FL against Overwhelming Collusive Attackers [57] M, FA LF, BD Dirichlet FedAvg
Defending against the Label-flipping Attack in FL [27] M, C10 LF, IID, Dirichlet FedAvg
FRL [46] M, FE, C10 Fang, NDSS21 Dirichlet, Natural FedAvg
CONTRA [7] M, C10, Loan LF, BD Dirichlet FedAvg
EIFFeL [59] M, FA, FE,C10 LIE, RGA, SF, NDSS21 IID, Natural FedAvg
Local and central DP for robustness and privacy in FL [48] E, C10, s140, Reddit BD McMahan FedAvg
Signguard [78] M, FA, C10, AGnews LIE, RGA, SF, NDSS21 IID FedSGD
DisBezant [41] M, FA, C10 RGA Fang FedAvg
Learning from History for Byzantine Robust Optimization [56] M, C10 BF, LF, LIE Exponential FedSGD
Byzantine-robust learning on heterogeneous datasets... [29] M BF, LF, LIE, IPM, Mimic McMahan FedSGD
Byzantine-Resilient Non-Convex Stochastic Gradient Descent [4] C10, C100 SF, LF, LIE, Delayed-grad, IID FedSGD

Byzantine-robust Federated Learning... [38] M, FA, C10,
Spambase

LF, IPM, LIE,
Uniform, arbitrary McMahan FedAvg

Stochastic alternating direction method of multipliers for... [39] M, Covertype RGA, SF, LF IID FedSGD
Variance reduction is an antidote to byzantines [24] LIBSVM LF, BF, LIE, IPM IID FedSGD
On the byzantine robustness of clustered FL [60] M, FA, C10 RGA, LF, Uniform noise IID FedSGD
RSA [34] M SF IID FedSGD
Federated variance-reduced stochastic gradient descent [71] ijcnn1, covtype RGA, SF, Zero-grad IID FedSGD
Abnormal client behavior detection in federated learning [35] FE SF, RGA, Grad ascent Natural FedAvg
Distributed Momentum for Byzantine-resilient SGD [20] M, FA, C10/100 LIE, IPM IID FedSGD
Attack-resistant FL with residual-based reweighting [22] M, C10, Amazon, Loan LF, BD Dirichlet, Natural FedAvg
Towards communication-efficient and attack-resistant... [40] M LF IID FedSGD
Justinian’s GAAvernor [51] M, C10, Yelp, Health RGA IID FedSGD
Untargeted poisoning attack detection in FL via... [42] M, C10, MTL Trajet BD IID FedSGD
TDFL [77] M, FA, C10 LF, RGA, Krum, Trim, BD McMahan FedAvg
Siren [25] FA, C10 SF, LF, bhagoji Fang FedAvg
FLARE [67] FA, C10, Kather Krum, Trim IID FedAvg
Analyzing Federated Learning Through an Adversarial Lens [10] FA, UCI Census Specific attack IID FedAvg
BaFFLe [5] C10, FE BD Dirichlet FedAvg
Defending against backdoors in FL with robust learning rate [50] FA, FE BD Both FedAvg

e.g., a unit vector in the opposite direction of the benign
aggregate. Finally, the adversary computes her malicious
model update by maximally perturbing the benign reference
aggregate in the malicious direction with the goal of evading
detection by robust aggregation algorithms.”

D. Explanation of the choice of datasets used FedRecover re-
evaluation

Below, we justify the choice of four datasets (Section VII-B)
we use to re-evaluate FedRecover (FedRecover). There are two
primary reasons for the choice we make.

(Reason-1) We believe, FedRecover is not compatible with
cross-device FL setting, as it requires historical information
of client’s past model updates to estimate next round’s update.
Note that, in cross-device FL, a client participates in very few
rounds. Consider a cross-device FL with 1000 total clients and
10 clients participating in each round, and that it runs for 1000
rounds. In this case, for a client, on average, the server will
have just 10 updates, 1 every 100th round. Since FedRecover
uses LBFGS to estimate the next update using the client’s
past updates and global models, in the cross-device setting
FedRecover would not be able to estimate a good update if
a client gets selected for training once every 100th round.



Hence, we do not consider cross-device datasets, e.g., from
LEAF repository [13].

Next, note that cross-silo datasets [19], [70], [6] generally
have a very small number of clients, e.g., for all the 9 cross-
silo medical datasets from [19], [6] have less than 5 clients.
Assuming 20% of them to be malicious (as most works
assume) is not practical assumption [62], and sometimes
makes evaluation impossible, e.g., when number of clients is
less than 5. Hence, we omit using such cross-silo datasets from
our evaluation.
(Reason-2) We use MNIST and Fashion-MNIST as they are
used in FedRecover work. This serves two-fold purpose: (i)
it helps us check our implementation by matching our results
with the results reported in original FedRecover work; note
that FedRecover work has not open-sourced their code, (ii) as
majority of FedRecover evaluation uses MNIST data, using
Fashion-MNIST allows us to understand the performance of
FedRecover for slightly more difficult tasks4. Finally, to further
stress-test FedRecover, we use even more difficult datasets,
i.e., FEMNIST5 and CIFAR10. As our results show, for
more difficult datasets, either FedRecover does not recover or
requires very high communication cost, and this is true even
when there is no attack during original training or recovery.

E. Comparing different data distribution strategies

It is difficult to know which distribution represents real-
world FL settings. However, we argue that some simple statis-
tical analyses of distribution strategies can help us understand
which strategies can better represent real-world FL. To this
end we analyze Dirichlet and FCJ distributions.

In particular, consider a classification task with C classes;
we generate client datasets using Dir and FCJ for 100 clients
and varying levels of non-iid-ness. For clarity of presentation
we use CIFAR10 data here, but for any datasets we expect
similar plots. We then plot the following three statistics of the
client datasets.
(Stat-1) We plot the number of samples per user, which
is motivated from the client data visualizations provided in
the Leaf repository for various real-world datasets.6 Figure 6
shows the results for three levels of non-iid-ness (For Dir
we use α ∈ {0.1, 0.3, 0.5} and for FCJ we use bias b ∈
{0.9, 0.5, 0.1}.7). We note that Dir produces client datasets
with sufficient heterogeneity in terms of size of the client’s
local datasets. However, we observe that FCJ produces client
datasets of almost equal size; note that the the black histogram
is concentrated around 500 (i.e., total number of samples in
dataset / total number of clients).

4Finally, we note that FedRecover uses HAR dataset in their evaluation
which has 30 real users’ data. However we omit HAR, as similar to MNIST,
it is also a very simple task; this is evident from the Figure-1 of FedRecover
where they report 98% accuracy with simple fully-connected network.

5We use 300 clients from total 3400 clients and train in cross-silo setting,
because FedRecover is not compatible with cross-silo settings. This is a
common practice to evaluate cross-silo defenses [82], [37]

6https://leaf.cmu.edu
7Recall that with higher alpha, Dir produces more iid datasets. While with

higher bias, FCJ produces more non-iid datasets.

To summarize, FCJ produces client datasets that are locally
IID and all clients have almost same sizes of datasets. This
IID-ness is fundamental to FCJ distribution. As we already
showed, with more IID client datasets FL becomes intrinsically
robust. Hence, performing robustness analysis of robust AGRs,
in combination with FCJ, may give us results that show that
the AGR is highly robust.

F. Communication-accuracy trade-off of FedRecover

In Figure 7, we report the tradeoff between the recovery
accuracy and communication of FedRecover; the setting is
that of Figure 5b for FEMNIST when there is no attack
during recovery phase. Note that the minimum number of exact
updates that the FedRecover uses is Tw + Ttotal−Tw−Tf

Tc
+ Tf ;

this formula does not account for additional exact updates that
FedRecover uses in its abnormality fixing phase.

We note that recovery accuracy increases as FedRecover
relies on exact updates from the clients. However, note also
that using the same amount of exact updates (i.e., same com-
munication) would give us more accuracy using much simpler
train-from-scratch setting. For instance, with about 20% exact
updates (i.e., 40 rounds of training for train-from-scratch),
FedRecover achieves about 76% accuracy while train-from-
scratch achieves close to 80% accuracy. This implies, in our
setting (and in any more useful fast converging FL algorithms)
FedRecover cannot catch up to train-from-scratch.

G. Validating our FedRecover implementation

We were able to match our results for FedRecover for
MNIST and FashionMNIST with those reported in [14]. We
implement FedRecover with FedSGD, where a client shares
its gradient on a single mini-batch of its data. As shown
in Figure 4b, we achieve for MNIST(FMNIST) a recovery
accuracy of 91%(73%) where the post-attack accuracy was
76%(65%) and the baseline no attack accuracy with all benign
clients was 92%(75%).

H. Adaptive Attack FMNIST

We perform FedRecover on FMNIST under imperfect detec-
tion. From Figure 8, we can see that there is a slight drop in the
performance of FedRecover when some malicious clients slip
past the detector stage, i.e., non-zero FNR. These malicious
clients then perform attacks during the recovery process and
this leads to a lower accuracy in recovery. The variation in
FPR, i.e., when some benign clients are flagged as malicious
and they are unable to take part in recovery, does not seem to
have a significant effect on the recovery accuracy.

Table III: Abbreviations and full-forms of attacks in Table I.

LF Label Flip
IPM Inner Product Manipulation
SF Sign Flip
BF Bit Flip
LIE Little is Enough
AN Additive Noise
BD Backdoor [8]
RGA Random gaussian attack



500 1000 1500
Number of samples per user

0

5

10

15

20

Dir-0.5 / Fcj-0.1

0 250 500 750 1000 1250
Number of samples per user

0

5

10

15

20

25
Dir-0.3 / Fcj-0.5

0 500 1000 1500 2000
Number of samples per user

0

5

10

15

20

25

30
Dir-0.1 / Fcj-0.9

Dir
Fcj

Figure 6: Histograms of the number of samples per client in FL client datasets generated using FCJ and Dirichlet (Dir)
distributions. From left to right, the non-IID degree of generated datasets increases. We note that all of FCJ client datasets
have almost same size, while Dirichlet client datasets have widely varying sizes. Recall that higher value of parameter of FCJ
(Dir) distribution generates more (less) non-IID datasets.

20 40 60 80 100
Percentage of Exact Updates

70

72

74

76

78

80

82

84

Ac
cu

ra
cy

Accuracy vs Communication Efficiency

Baseline
Acc with Exact Updates
Tw = 20
Tw = 10

Figure 7: FedRecover accuracy increases as we rely more on
exact updates, i.e., with more communication. However, with
the same amount of communication, simple train-from-scratch
training can achieve higher accuracy than FedRecover. Here,
we do not attack during recovery phase.

0.1 0.2 0.3
FPR

0.
1

0.
2

0.
3

FN
R

Variations in FNR and FPR

4.5

5.0

5.5

6.0

6.5

7.0

Figure 8: We evaluate FMNIST under imperfect detection i.e.,
some malicious clients detected as benign(non-zero FNR) and
some benign clients detected as malicious(non-zero FPR).

Table II: Abbreviations and full-forms of datasets in Table I.

M MNIST
FA FashionMNIST
FE FEMNIST
C10 CIFAR10
C100 CIFAR100
P Purchase
H HAR
S140 Sentiment140
SVHN Street-view House Numbers
VGG VGGFace
KDD KDDCup
N20 News 20
A Amazon
S Shakespeare


	Introduction
	Background
	Federated learning (FL)
	Brief overview of FL poisoning attacks

	Overview of The Experimental Setup of FL Poisoning Defense Works
	Re-evaluating FedRecover
	Introducing FedRecover
	Critical re-evaluation of FedRecover's robustness
	Choice of baselines
	Choice of datasets
	Choice of data distribution


	Key Recommendations
	Conclusion
	References
	Appendix
	Methodology we use to classify 50 defense works
	Experimental setup
	FEMNIST caldas2018leaf,cohen2017emnist
	CIFAR10 Krizhevsky2009learning
	MNIST lecunmnist
	Fashion-MNIST xiao2017fashion

	Untargeted poisoning attacks used for evaluation
	Explanation of the choice of datasets used FedRecover re-evaluation
	Comparing different data distribution strategies
	Communication-accuracy trade-off of FedRecover
	Validating our FedRecover implementation
	Adaptive Attack FMNIST


