CMPS 105: Lecture #10.6
Spreadsheet Improvements
(A Spittle-Flecked Rant)

©2018 Dr. William T. Verts

Spreadsheets are Great!
• 2D Grids containing Billions of Cells
• Totally Free-Format:
 – Numbers
 – Text
 – Formulae
 – Left Blank
• Automatic Recalculation
• Instant “What If?” Models

Could They Be Better?
• Yes, they are ubiquitous today, and...
• ...yes, we have better tools than back then:
 – More functions available
 – Multipage Notebooks
 – Advanced Graphics
 – Macros (Built-in Programming Language)
• ...but we’ve been using the same basic layout since VisiCalc (1978)!

Some Blind Spots
• Only Two Data Types:
 – Strings
 – Numbers (Double-Precision 64-bit Binary Floats)
• Cell Addresses are Clumsy
 – What does A1 or B6 really mean?
 – Named ranges can help, but only so far.
• How Good are the Answers?
 – You get a numeric answer; can you trust it?

A Few Modest Suggestions
• BCD Arithmetic
• Interval Arithmetic or UNUMs
• Extended Data Types
• Built-In Dimensional Analysis
• Expanded (and Corrected) Dates
• Base-Conversion Formats

Rant #1: BCD Arithmetic
• Problem:
 – 64-bit Double-Precision Binary Floats suffer from round-off error in unexpected places \((\sqrt{2} / 10)\) is an infinite fraction).
 – Currency conversions can’t legally have round-off error.
• Solution:
 – Keep each decimal digit as 4 independent bits (Binary Coded Decimal, or BCD).
 – Enough space available in a Double to keep 13 BCD sig figs (but not the 15-16 of a Binary Float).
• Issue:
 – Not as information dense as pure binary.
 – No hardware support (yet), must be done in software.
Rant #2: Interval Arithmetic

- Problem:
 - No information about how “good” any answer is.
 - Is there a confidence interval? Error bars? **NO.**
- Solution:
 - Interval Arithmetic: Carry every calculation as two numbers, a low bound and a high bound, gives confidence interval at end. Answer guaranteed to be in between.
 - Universal Numbers (UNUMs) extend Interval Arithmetic to variable-precision binary.
- Issue:
 - No hardware support (yet), must be done in software.

Rant #3: Expanded Data Types

- Problem:
 - Spreadsheets only deal with strings and numbers.
 - Microsoft badly troweled in complex arithmetic as strings.
- Solution:
 - Allow data types such as complexes, polynomials, lists, audio clips, images, video, etc.
- Issue:
 - Basic spreadsheet engines have to be completely rewritten from scratch.

Rant #4: Dimensional Analysis

- Problem:
 - Any spreadsheet model involving units have to be carefully analyzed to avoid conversion issues (multiplying gallons times miles can’t be detected).
- Solution:
 - Attach units to quantities, have spreadsheet maintain, as in 2.54(cm/in) * 10(in) = 25.4(cm)
- Issue:
 - Basic spreadsheet engines have to be completely rewritten from scratch.

Rant #5: Expanded Dates

- Problem:
 - Dates don’t go earlier than January 1, 1900.
 - Persistent error claiming 1900 is a leap year.
- Solution:
 - Extend model back at least to October 15, 1582 (start of Gregorian Calendar).
 - Maybe even go with Julian Day numbers.
- Issue:
 - Compatibility with current spreadsheets.

Rant #6: Base-Conversion Formats

- Problem:
 - Numbers can’t be shown in different bases (there are a few functions that return equivalent strings in different bases, but not as cell formats).
- Solution:
 - Extend formats (General, Currency, Percent, etc.) to include at least Binary, Octal, Hex, etc.
- Issue:
 - ??? Shouldn’t be that hard!

Your Responsibilities

- You are a consumer of high-tech products.
- It’s your money!
- It’s your time!
- It’s your life!
- You should **demand** better tools.
But Hasn’t Anybody ever tried to do this Before?

- There were spreadsheets other than Microsoft Excel, Lotus 1-2-3, or Borland Quattro.
- I’ve even written a few spreadsheets myself with weird capabilities.
- 3D Spreadsheets (early 1990s).

The NeXT Computer (an aside)

- 1988: Jobs announces NeXT ($5000):
 - Fastest Processor chip then used on Macs,
 - 16 megabytes of memory (PCs had <1 megabyte),
 - 1024×1024 display (PCs were 320×200),
 - CD-quality audio (PCs could go “beep”),
 - Built-in networking (neither PCs nor Macs),
 - Laser printer standard (PCs used dot-matrix),
 - Lotus Improv spreadsheet.

Lotus Improv Spreadsheet

- Hypercube instead of 2D grid.
- Up to 12 dimensional data.
- View data from along any axis.
- Names rather than cell addresses.
- Genesis of Multipage Notebooks used today.
- Never very popular, tech folded in as pivot tables in modern spreadsheets.

Cut to the Video…