

COMPSCI 105 – Lecture #2

Numbers and the Computer

(The First of Three Math-Heavy Lectures)

©2014-2020 Dr. William T. Verts

Definition: BIT

- Binary Digit
- Smallest possible unit of information
- Two values only: 0 or 1
- Represent a single Yes or No question
- Can encode any two-valued system
 - Yes/No, True/False, Up/Down, On/Off, In/Out, etc.
- Easy to build hardware to encode bits.

Copyright (C) 2014 Dr. William T. Verts

Bits and Patterns

- 1 Bit gives $2^1 = 2$ patterns: 0 or 1
- 2 Bits gives $2^2 = 4$ patterns: 00, 01, 10, 11
- 3 Bits gives $2^3 = 8$ patterns: 000, 001, 010, 011, 100, 101, 110, 111
- Each new bit doubles the number of patterns
- Therefore: N Bits gives 2^N Distinct patterns.
- Those patterns can be interpreted as either unsigned or signed decimal numbers.

Copyright (C) 2014-2020 Dr. William T. Verts

What About 8 Bits?

<u>Unsigned</u>	<u>Signed</u>
• 00000000 = 0	00000000 = +0 (zero is positive!)
• 00000001 = 1	00000001 = +1
• 00000010 = 2	00000010 = +2
• 00000011 = 3	00000011 = +3
• 00000100 = 4	00000100 = +4
• (all positives start with 0)
• 01111110 = 126	01111110 = +126
• 01111111 = 127	01111111 = +127 (biggest positive)
• 10000000 = 128	10000000 = -128 (smallest negative)
• 10000001 = 129	10000001 = -127
• (all negatives start with 1)
• 11111100 = 252	11111100 = -4
• 11111101 = 253	11111101 = -3
• 11111110 = 254	11111110 = -2
• 11111111 = 255	11111111 = -1

Copyright (C) 2017-2020 Dr. William T. Verts

Definition: Byte

- Packet of 8 Bits (French word is “octet”)
- Typical unit of computer memory / storage
- Used to represent one standard character
- Values range from 00000000 ... 11111111
- $2^8=256$ Distinct patterns
- Can encode any integer from 0 through 255
- Can also encode any integer from -128 through +127 (and zero is treated as positive)

Copyright (C) 2014-2020 Dr. William T. Verts

Unsigned Integers

- Pick storage size of N bits (8, 16, 32, 64, etc.)...
- ...therefore 2^N distinct patterns are available.
- Smallest value is all zeroes (decimal value 0),
- Largest value is therefore 2^N-1 .
- Results less than zero are “underflow” errors,
- Results greater than max are “overflow” errors
- Each computer architecture has a fixed N.

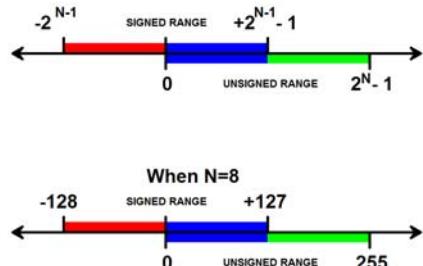
Copyright (C) 2014 Dr. William T. Verts

Signed Integers

- Pick N , there are still 2^N patterns.
- Consider half the patterns to be negative.
(Half of 2^N is $2^N/2 = 2^{N-1}$)
- The other half of the patterns are zero and above.
- Zero is considered to be positive.
- Signed range is therefore $-2^{N-1} \dots +2^{N-1}-1$.

Copyright (C) 2014-2020 Dr. William T. Verts

Signed vs. Unsigned Integers



Copyright (C) 2020 Dr. William T. Verts

Example for $N=8$

- $2^8 = 256$ patterns
- Unsigned Range
 - Minimum: 0
 - Maximum: $2^8-1 = 255$
- Signed Range
 - Minimum: $-2^{8-1} = -2^7 = -128$
 - Maximum: $+2^{8-1}-1 = +2^7-1 = +128-1 = +127$

Copyright (C) 2014 Dr. William T. Verts

Example for $N=16$

- $2^{16} = 65536$ patterns
- Unsigned Range
 - Minimum: 0
 - Maximum: $2^{16}-1 = 65535$
- Signed Range
 - Minimum: $-2^{16-1} = -2^{15} = -32768$
 - Maximum: $+2^{16-1}-1 = +2^{15}-1 = +32768-1 = +32767$

Copyright (C) 2014 Dr. William T. Verts

Example for $N=32$

- $2^{32} = 4,294,967,296$ patterns
- Unsigned Range
 - Minimum: 0
 - Maximum: $2^{32}-1 = 4,294,967,295$
- Signed Range
 - Minimum: $-2^{32-1} = -2^{31} = -2,147,483,648$
 - Maximum: $+2^{32-1}-1 = +2^{31}-1 = +2,147,483,647$
 - Nine (and a little more) significant digits

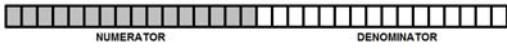
Copyright (C) 2014 Dr. William T. Verts

What about Real numbers?

- Approaches:
 - Rational (ratio of integers)
 - Fixed-Point
 - Floating-Point
- All require re-interpreting how bits are used.
- All have both good and bad attributes.
- All have been successfully used in real tools.
- Floating-Point is dominant today.

Copyright (C) 2014-2020 Dr. William T. Verts

Rational Numbers



- For N bits, divide into two $\frac{N}{2}$ bit sections:
 - First section is numerator
 - Second section is denominator
- Numbers like $\frac{1}{3}$, $\frac{1}{2}$, $\frac{3}{7}$, $\frac{1}{10}$, $\frac{355}{113}$ are easy
- Reduce to lowest form (e.g., $\frac{2}{4}$ and $\frac{3}{6}$ go to $\frac{1}{2}$)
- Not very efficient:
 - low information density (many redundant patterns)
 - Not efficient use of bits (N has to be very big)

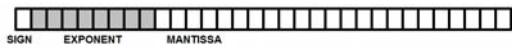
Copyright (C) 2017-2020 Dr. William T. Verts

Fixed-Point Numbers

- Set virtual decimal point to middle of bits:
 - Half the bits are integer
 - Half the bits are fraction
- All bit patterns are useful
- Easy to add, subtract, multiply, divide in binary
- Trades off range of values for fraction support.
 - For N=32 (16-bit signed integer, 16-bit fraction), maximum signed value is only +32767.9999847412...
- Still not an efficient use of bits

Copyright (C) 2017-2020 Dr. William T. Verts

Floating-Point Numbers



- Binary version of Scientific Notation
 - Decimal: -3.4024×10^{15} or $+1.732 \times 10^{-6}$ or $3 \times 10^0 = 3$
 - Binary: $+1.00101001 \times 2^{101}$ (which in decimal is +37%)
- Use one bit for *sign* (0=plus, 1=minus)
- Use some of the N bits for *exponent*
- Use remaining bits for *mantissa* (significand)
- Trades off precision for dynamic range
- Efficient use of bits (very few unused patterns)
- Most software today uses floating-point

Copyright (C) 2017 Dr. William T. Verts

Floating-Point Precision

- Single Precision**
 - N=32 bits (1 sign, 8 exponent, 23 mantissa)
 - Dynamic Range: $\pm 10^{38}$
 - Significant Figures: only 5-6 Decimal Digits
(Remember that 32 bit integers have about 9 sig. figs.)
- Double Precision (Used by Excel & Python)**
 - N=64 bits (1 sign, 11 exponent, 52 mantissa)
 - Dynamic Range $\pm 10^{308}$
 - Significant Figures: 15-16 Decimal Digits

Copyright (C) 2014-2020 Dr. William T. Verts

But long fractions get rounded off:

- Expected loss of precision:
 - Numbers with naturally long but finite fractions,
 - Rationals that repeat forever ($\frac{1}{3} = 0.333333333...$),
 - Irrationals (e, π , ϕ , $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, etc.).
- Unexpected loss of precision: Many well-behaved fractions in decimal are ill-behaved in binary ($\frac{1}{10} = 0.00011001100110011...$)

Copyright (C) 2014-2020 Dr. William T. Verts

Aside: Proof that $\sqrt{2}$ is Irrational

- $\sqrt{2} = 1.414213562...$
- Remember:
 - Even \times Even = Even ($4 \times 6 = 24$)
 - Even \times Odd = Even ($4 \times 7 = 28$)
 - Odd \times Odd = Odd ($5 \times 7 = 35$)
- Assume $\sqrt{2}$ is Rational: $\sqrt{2} = \frac{P}{Q}$
- Assume Lowest Form: P, Q aren't both even
 - (if both were even, we can repeatedly divide both P and Q by 2 until at least one is odd)

Copyright (C) 2014 Dr. William T. Verts

Aside: Proof that $\sqrt{2}$ is Irrational

- Starting assumption: $\sqrt{2} = \frac{P}{Q}$ (P, Q not both even)
- Square both sides: $2 = P^2 / Q^2$
- Multiply by Q^2 : $2Q^2 = P^2$
- Conclusion #1: P^2 is even, thus P is even
- Divide by 2: $Q^2 = P^2 / 2 = P \times \frac{P}{2}$
- Conclusion #2: Q^2 is even, thus Q is even
- Contradiction:
 - Initial assertion was P, Q aren't both even, proof says both are even, thus assumption that $\sqrt{2} = \frac{P}{Q}$ is false. No such rational number exists.

Copyright (C) 2014-2020 Dr. William T. Verts

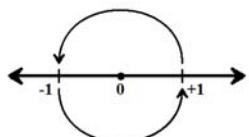
The Biggest Dirty Secret of Computing

- Most of the interesting numbers in the Universe are irrational,
- Numbers on computers have a fixed and finite number of bits,
- Therefore, most values get rounded off.
- Most numerical results are approximations.**
- More bits means more precision, but only forestalls and does not eliminate the problem.

Copyright (C) 2014 Dr. William T. Verts

Complex Numbers

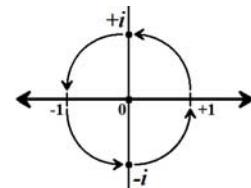
- The Real number line extends from $-\infty$ to $+\infty$,
- Use of space above and below the line gives us more computational expressive power.
- Negation then becomes a rotation of 180°:



Copyright (C) 2014 Dr. William T. Verts

Complex Numbers

- Rotation of $+1$ by 90° leaves it in space above the zero center. Call that number i :



Copyright (C) 2014 Dr. William T. Verts

Complex Numbers

- Multiplying a number by i twice equals negation (two rotations of 90°),
- Thus $i \times i = i^2 = -1$, and therefore $i = \sqrt{-1}$
- You can't take the square root of negative numbers, right?
- Well, here we can, sort of, but to do this...
- ... i is called "imaginary"

Copyright (C) 2014-2020 Dr. William T. Verts

Complex Numbers

- A complex number is then a pair of numbers:
 - A value along the Real axis,
 - A value along the Imaginary axis.
 - Written with the Real part first, then Imaginary.
- Examples:
 - $-2+3i$, $5-7i$, $-3+2i$, $-4-6i$, $6.7+5.9i$, etc.
 - Just 7 by itself (the same as $7+0i$)

Copyright (C) 2014 Dr. William T. Verts

Complex Math

- Add/Subtract: treat components separately:
 - $2+6i + 5-2i = (2+5) + (6-2)i = 7+4i$
 - $2+6i - 5-2i = (2-5) + (6-(-2))i = -3+8i$
- Multiplication uses FOIL method:
 - $2+6i \times 5-2i =$
 - $(2 \times 5) + (2 \times -2i) + (6i \times 5) + (6i \times -2i) =$
 - $(10) + (-4i) + (30i) + (-12i^2) =$
 - $(10 + 12) + (-4 + 30)i = 22+26i$

Copyright (C) 2014 Dr. William T. Verts

Complex Math

- Division uses two complex multiplications to eliminate imaginary component in denominator,
- Multiply both numerator and denominator by complex conjugate of denominator (the same number with opposite sign on imaginary part).
- Example:
 - $22+26i \div 2+6i =$
 - Numerator: $22+26i \times 2-6i = 200-80i$
 - Denominator: $2+6i \times 2-6i = 4+36 = 40$
 - $200-80i \div 40 = 5-2i$

Copyright (C) 2014 Dr. William T. Verts

Complex Math

- Used in math, engineering, physics, etc.
- Supported by early language FORTRAN,
- Supported by modern language Python,
- Supported (badly) by Excel 2007 and later.
- Mostly Double-Precision Floats,
- Subject to same round-off errors as other floating-point numbers.

Copyright (C) 2014 Dr. William T. Verts

Copyright (C) 2014 Dr. William T. Verts