
1/19/2020

1

COMPSCI 105 – Lecture #2
Numbers and the Computer

(The First of Three Math‐Heavy Lectures)

©2014‐2020 Dr. William T. Verts

Definition: BIT

• Binary Digit

• Smallest possible unit of information

• Two values only: 0 or 1

• Represent a single Yes or No question

• Can encode any two‐valued system

– Yes/No, True/False, Up/Down, On/Off, In/Out, etc.

• Easy to build hardware to encode bits.

Copyright (C) 2014 Dr. William T. Verts

Bits and Patterns

• 1 Bit gives 21 = 2 patterns: 0 or 1

• 2 Bits gives 22 = 4 patterns: 00, 01, 10, 11

• 3 Bits gives 23 = 8 patterns: 000, 001, 010, 011, 
100, 101, 110, 111

• Each new bit doubles the number of patterns

• Therefore: N Bits gives 2N Distinct patterns.

• Those patterns can be interpreted as either 
unsigned or signed decimal numbers.

Copyright (C) 2014‐2020 Dr. William T. Verts

What About 8 Bits?
• Unsigned Signed
• 00000000 = 0 00000000 = +0 (zero is positive!)
• 00000001 = 1 00000001 = +1
• 00000010 = 2 00000010 = +2
• 00000011 = 3 00000011 = +3
• 00000100 = 4 00000100 = +4
• … … (all positives start with 0)
• 01111110 = 126 01111110 = +126
• 01111111 = 127 01111111 = +127 (biggest positive)
• 10000000 = 128 10000000 = ‐128 (smallest negative)
• 10000001 = 129 10000001 = ‐127
• … … (all negatives start with 1)
• 11111100 = 252 11111100 = ‐4
• 11111101 = 253 11111101 = ‐3
• 11111110 = 254 11111110 = ‐2
• 11111111 = 255 11111111 = ‐1

Copyright (C) 2017‐2020 Dr. William T. Verts

Definition: Byte

• Packet of 8 Bits (French word is “octet”)

• Typical unit of computer memory / storage

• Used to represent one standard character

• Values range from 00000000 … 11111111

• 28=256 Distinct patterns

• Can encode any integer from 0 through 255

• Can also encode any integer from ‐128 
through +127 (and zero is treated as positive)

Copyright (C) 2014‐2020 Dr. William T. Verts

Unsigned Integers

• Pick storage size of N bits (8, 16, 32, 64, etc.)…

• …therefore 2N distinct patterns are available.

• Smallest value is all zeroes (decimal value 0),

• Largest value is therefore 2N‐1.

• Results less than zero are “underflow” errors,

• Results greater than max are “overflow” errors

• Each computer architecture has a fixed N. 

Copyright (C) 2014 Dr. William T. Verts



1/19/2020

2

Signed Integers

• Pick N, there are still 2N patterns.

• Consider half the patterns to be negative.

(Half of 2N is 2N/2 = 2N‐1)

• The other half of the patterns are zero and 
above.

• Zero is considered to be positive.

• Signed range is therefore ‐2N‐1 … +2N‐1‐1.

Copyright (C) 2014‐2020 Dr. William T. Verts

Signed vs. Unsigned Integers

Copyright (C) 2020 Dr. William T. Verts

Example for N=8

• 28 = 256 patterns

• Unsigned Range

–Minimum: 0

–Maximum: 28‐1 = 255

• Signed Range

–Minimum: ‐28‐1 = ‐27 = ‐128

–Maximum: +28‐1‐1 = +27‐1 = +128‐1 = +127

Copyright (C) 2014 Dr. William T. Verts

Example for N=16

• 216 = 65536 patterns

• Unsigned Range

–Minimum: 0

–Maximum: 216‐1 = 65535

• Signed Range

–Minimum: ‐216‐1 = ‐215 = ‐32768

–Maximum: +216‐1‐1 = +215‐1 = +32768‐1 = +32767

Copyright (C) 2014 Dr. William T. Verts

Example for N=32

• 232 = 4,294,967,296  patterns

• Unsigned Range

–Minimum: 0

–Maximum: 232‐1 = 4,294,967,295

• Signed Range

–Minimum: ‐232‐1 = ‐231 = ‐2,147,483,648

–Maximum: +232‐1‐1 = +231‐1 = +2,147,483,647

– Nine (and a little more) significant digits

Copyright (C) 2014 Dr. William T. Verts

What about Real numbers?

• Approaches:

– Rational (ratio of integers)

– Fixed‐Point

– Floating‐Point

• All require re‐interpreting how bits are used.

• All have both good and bad attributes.

• All have been successfully used in real tools.

• Floating‐Point is dominant today.

Copyright (C) 2014‐2020 Dr. William T. Verts



1/19/2020

3

Rational Numbers

• For N bits, divide into two N⁄2 bit sections:

– First section is numerator

– Second section is denominator

• Numbers like 1⁄3, 
1⁄2, 

3⁄7, 
1⁄10, 

355⁄113 are easy

• Reduce to lowest form (e.g., 2⁄4 and 
3⁄6 go to 

1⁄2)

• Not very efficient:

– low information density (many redundant patterns)

– Not efficient use of bits (N has to be very big)

Copyright (C) 2017‐2020 Dr. William T. Verts

Fixed‐Point Numbers

• Set virtual decimal point to middle of bits:
– Half the bits are integer

– Half the bits are fraction

• All bit patterns are useful

• Easy to add, subtract, multiply, divide in binary

• Trades off range of values for fraction support.
– For N=32 (16‐bit signed integer, 16‐bit fraction), 
maximum signed value is only +32767.9999847412…

• Still not an efficient use of bits

Copyright (C) 2017‐2020 Dr. William T. Verts

Floating‐Point Numbers

• Binary version of Scientific Notation
– Decimal: ‐3.4024×1015 or  +1.732×10‐6 or  3×100 = 3
– Binary: +1.00101001×2101 (which in decimal is +37⅛)

• Use one bit for sign (0=plus, 1=minus)
• Use some of the N bits for exponent
• Use remaining bits for mantissa (significand)
• Trades off precision for dynamic range
• Efficient use of bits (very few unused patterns)
• Most software today uses floating‐point

Copyright (C) 2017 Dr. William T. Verts

Floating‐Point Precision

• Single Precision

– N=32 bits (1 sign, 8 exponent, 23 mantissa)

– Dynamic Range: ±10±38

– Significant Figures: only 5‐6 Decimal Digits  
(Remember that 32 bit integers have about 9 sig. figs.)

• Double Precision (Used by Excel & Python)

– N=64 bits (1 sign, 11 exponent, 52 mantissa)

– Dynamic Range ±10±308

– Significant Figures: 15‐16 Decimal Digits

Copyright (C) 2014‐2020 Dr. William T. Verts

But long fractions get rounded off:

• Expected loss of precision:

– Numbers with naturally long but finite fractions,

– Rationals that repeat forever (⅓ = 0.333333333…),

– Irrationals (e, π, ϕ, √2, √3, √5, etc.).

• Unexpected loss of precision: Many well‐
behaved fractions in decimal are ill‐behaved in 
binary (1/10 = 0.00011001100110011…)

Copyright (C) 2014‐2020 Dr. William T. Verts

Aside: Proof that √2 is IrraƟonal

• √2 = 1.414213562…

• Remember:
– Even × Even = Even (4 × 6 = 24)

– Even × Odd = Even (4 × 7 = 28)

– Odd × Odd = Odd (5 × 7 = 35)

• Assume √2 is RaƟonal: √2 = P⁄Q
• Assume Lowest Form: P, Q aren’t both even
– (if both were even, we can repeatedly divide both 
P and Q by 2 until at least one is odd)

Copyright (C) 2014 Dr. William T. Verts



1/19/2020

4

Aside: Proof that √2 is IrraƟonal

• Starting assumption: √2 = P⁄Q (P, Q not both even)

• Square both sides: 2 = P2 ⁄ Q2

• Multiply by Q2: 2Q2 = P2

• Conclusion #1: P2 is even, thus P is even

• Divide by 2: Q2 = P2 / 2 = P × P⁄2
• Conclusion #2: Q2 is even, thus Q is even

• Contradiction:
– Initial assertion was P, Q aren’t both even, proof says 
both are even, thus assumpƟon that √2 = P⁄Q is false.  
No such rational number exists. 

Copyright (C) 2014‐2020 Dr. William T. Verts

The Biggest Dirty Secret of Computing

• Most of the interesting numbers in the 
Universe are irrational,

• Numbers on computers have a fixed and finite
number of bits,

• Therefore, most values get rounded off.

• Most numerical results are approximations.

• More bits means more precision, but only 
forestalls and does not eliminate the problem.

Copyright (C) 2014 Dr. William T. Verts

Complex Numbers

• The Real number line extends from ‐∞ to +∞,

• Use of space above and below the line gives 
us more computational expressive power.

• Negation then becomes a rotation of 180°:

Copyright ©2014 Dr. William T. Verts

Complex Numbers

• Rotation of +1 by 90° leaves it in space above 
the zero center.  Call that number i:

Copyright (C) 2014 Dr. William T. Verts

Complex Numbers

• Multiplying a number by i twice equals 
negation (two rotations of 90°),

• Thus  i×i = i2 = ‐1, and therefore i = √‐1

• You can’t take the square root of negative 
numbers, right?

• Well, here we can, sort of, but to do this…  

• … i is called “imaginary”

Copyright (C) 2014‐2020 Dr. William T. Verts

Complex Numbers

• A complex number is then a pair of numbers:

– A value along the Real axis,

– A value along the Imaginary axis.

–Written with the Real part first, then Imaginary.

• Examples:

– 2+3i,   5‐7i,   ‐3+2i,   ‐4‐6i,   6.7+5.9i,   etc.

– Just 7 by itself (the same as 7+0i)

Copyright (C) 2014 Dr. William T. Verts



1/19/2020

5

Complex Math

• Add/Subtract: treat components separately:

– 2+6i +  5‐2i =  (2 + 5) + (6 – 2)i =  7+4i

– 2+6i – 5‐2i =  (2 – 5) + (6 – ‐2)i =  ‐3+8i

• Multiplication uses FOIL method:

– 2+6i × 5‐2i = 

– (2 × 5) + (2 × ‐2i) + (6i × 5) + (6i × ‐2i)  =

– (10)  +  (‐4i)  +  (30i)  +  (‐12i2)  =

– (10 + 12)  +  (‐4 + 30)i =  22+26i

Copyright (C) 2014 Dr. William T. Verts

Complex Math

• Division uses two complex multiplications to 
eliminate imaginary component in denominator,

• Multiply both numerator and denominator by 
complex conjugate of denominator (the same 
number with opposite sign on imaginary part).

• Example:
– 22+26i ÷ 2+6i =

– Numerator:  22+26i × 2‐6i =   200 – 80i
– Denominator:  2+6i × 2‐6i =   4+36   =   40

– 200 – 80i ÷ 40   =   5‐2i

Copyright (C) 2014 Dr. William T. Verts

Complex Math

• Used in math, engineering, physics, etc.

• Supported by early language FORTRAN,

• Supported by modern language Python,

• Supported (badly) by Excel 2007 and later.

• Mostly Double‐Precision Floats,

• Subject to same round‐off errors as other 
floating‐point numbers.

Copyright (C) 2014 Dr. William T. Verts Copyright (C) 2014 Dr. William T. Verts


