1/19/2020

COMPSCI 105 — Lecture #2
Numbers and the Computer

(The First of Three Math-Heavy Lectures)

©2014-2020 Dr. William T. Verts

Definition: BIT

Binary Digit

Smallest possible unit of information
Two valuesonly: O or 1

Represent a single Yes or No question

Can encode any two-valued system
— Yes/No, True/False, Up/Down, On/Off, In/Out, etc.
Easy to build hardware to encode bits.

Bits and Patterns

1 Bit gives 21 = 2 patterns: O or 1

2 Bits gives 22 = 4 patterns: 00, 01, 10, 11

3 Bits gives 23 = 8 patterns: 000, 001, 010, 011,
100, 101, 110, 111

Each new bit doubles the number of patterns
Therefore: N Bits gives 2N Distinct patterns.

Those patterns can be interpreted as either
unsigned or signed decimal numbers.

What About 8 Bits?

* Unsigned Signed

« 00000000 =0 00000000 = +0 (zero is positive!)
+ 00000001 =1 00000001 = +1

+ 00000010=2 00000010 = +2

« 00000011 =3 00000011 = +3

+ 00000100 =4 00000100 = +4

¢ 01111110=126
* 01111111=127
* 10000000=128
* 10000001 =129

.. (all positives start with 0)
01111110=+126
01111111 = +127 (biggest positive
10000000 = -128 (smallest negative)
10000001 = -127

. (all negatives start with 1)

¢ 11111100 =252 11111100=-4

¢ 11111101 =253 11111101=-3
¢ 11111110=254 11111110=-2
¢ 11111111=255 11111111 =-1

Definition: Byte

Packet of 8 Bits (French word is “octet”)
Typical unit of computer memory / storage
Used to represent one standard character
Values range from 00000000 ... 11111111
28=256 Distinct patterns

Can encode any integer from 0 through 255

Can also encode any integer from -128
through +127 (and zero is treated as positive)

Unsigned Integers

Pick storage size of N bits (8, 16, 32, 64, etc.)...
..therefore 2N distinct patterns are available.
Smallest value is all zeroes (decimal value 0),
Largest value is therefore 2N-1.

Results less than zero are “underflow” errors,
Results greater than max are “overflow” errors
Each computer architecture has a fixed N.

Signed Integers

* Pick N, there are still 2N patterns.
* Consider half the patterns to be negative.
(Half of 2N is 2N/2 = 2N-1)

* The other half of the patterns are zero and
above.

» Zero is considered to be positive.
Signed range is therefore -2N-1 .. +2N-1-1,

1/19/2020

Signed vs. Unsigned Integers

-2 N SIGNED RANGE +2N'1- 1
0 unsionep rance 2N_ 4
When N=8

-128 SIGNED RANGE +127

« Ve

0 UNSIGNED RANGE 255

Example for N=8

* 28 =256 patterns
* Unsigned Range
— Minimum: 0
— Maximum: 28-1 = 255
* Signed Range
— Minimum: -281=-27 = -128
— Maximum: +281-1 = +27-1 = +128-1 = +127

Example for N=16

+ 216 = 65536 patterns
* Unsigned Range
— Minimum: 0
— Maximum: 216-1 = 65535
* Signed Range
— Minimum: -2161 = -215 = -32768
— Maximum: +216-1-1 = +215-1 = +32768-1 = +32767

Example for N=32

* 232=4,294,967,296 patterns
* Unsigned Range
— Minimum: 0
— Maximum: 232-1 = 4,294,967,295
* Signed Range
— Minimum: -2321=.231=.2 147,483,648
— Maximum: +232-1.1 = +231.1 = +2,147,483,647
— Nine (and a little more) significant digits

What about Real numbers?

* Approaches:
— Rational (ratio of integers)
— Fixed-Point
— Floating-Point
* All require re-interpreting how bits are used.
All have both good and bad attributes.
All have been successfully used in real tools.

Floating-Point is dominant today.

2014-2020

Rational Numbers
O A T T T

NUMERATOR DENOMINATOR

* For N bits, divide into two V/, bit sections:
— First section is numerator
— Second section is denominator
* Numbers like V3, V,, 3/, V4, 35%/,45 are easy
* Reduce to lowest form (e.g., %/, and 3/, go to ¥/,)
* Not very efficient:
— low information density (many redundant patterns)
— Not efficient use of bits (N has to be very big)

nT. Vert

1/19/2020

Fixed-Point Numbers
(EEEEEEREENENENEPUNNNNENRRRRRNNNN

WHOLE BITS DECIMAL POINT FRACTION BITS
* Set virtual decimal point to middle of bits:
— Half the bits are integer
— Half the bits are fraction
* All bit patterns are useful
* Easy to add, subtract, multiply, divide in binary
* Trades off range of values for fraction support.

— For N=32 (16-bit signed integer, 16-bit fraction),
maximum signed value is only +32767.9999847412...

* Still not an efficient use of bits

Floating-Point Numbers
O T T T

SIGN EXPONENT MANTISSA

* Binary version of Scientific Notation
— Decimal: -3.4024x10% or +1.732x10® or 3x10°=3
— Binary: +1.00101001x2101 (which in decimal is +37%)

* Use one bit for sign (0=plus, 1=minus)

* Use some of the N bits for exponent

* Use remaining bits for mantissa (significand)

* Trades off precision for dynamic range

* Efficient use of bits (very few unused patterns)

* Most software today uses floating-point

Floating-Point Precision

* Single Precision

— N=32 bits (1 sign, 8 exponent, 23 mantissa)

— Dynamic Range: +10%38

— Significant Figures: only 5-6 Decimal Digits
(Remember that 32 bit integers have about 9 sig. figs.)

Double Precision (Used by Excel & Python)

— N=64 bits (1 sign, 11 exponent, 52 mantissa)

— Dynamic Range +10*308

— Significant Figures: 15-16 Decimal Digits

But long fractions get rounded off:

* Expected loss of precision:
— Numbers with naturally long but finite fractions,
— Rationals that repeat forever (% = 0.333333333...),
— Irrationals (e, , §, V2, V3, V5, etc.).

* Unexpected loss of precision: Many well-
behaved fractions in decimal are ill-behaved in
binary (1/,, = 0.00011001100110011...)

Aside: Proof that V2 is Irrational

* V2 =1.414213562...
* Remember:
—Even xEven =Even (4x6=24)
—Evenx0Odd =Even (4x7=28)
—0ddx0dd =0dd (5x7=35)
* Assume V2 is Rational: v2="/,
* Assume Lowest Form: P, Q aren’t both even

— (if both were even, we can repeatedly divide both
P and Q by 2 until at least one is odd)

2014 Dr. William T. Vert

Aside: Proof that V2 is Irrational

Starting assumption: V2 =¥/, (P, Q. not both even)

Square both sides: 2=P2/Q2

Multiply by Q2: 2Q%=P?

Conclusion #1: P2 is even, thus P is even
Divide by 2: Q?=P?2/2=Px"?/,

Conclusion #2:
Contradiction:

— Initial assertion was P, Q aren’t both even, proof says
both are even, thus assumption that v2 = P/Q is false.
No such rational number exists.

Q%is even, thus Q is even

1/19/2020

The Biggest Dirty Secret of Computing

* Most of the interesting numbers in the
Universe are irrational,

* Numbers on computers have a fixed and finite

number of bits,
* Therefore, most values get rounded off.
* Most numerical results are approximations.

* More bits means more precision, but only
forestalls and does not eliminate the problem.

Complex Numbers

The Real number line extends from -oo to +oo,

Use of space above and below the line gives
us more computational expressive power.

Negation then becomes a rotation of 180°:

.[Uﬂ

Complex Numbers

* Rotation of +1 by 90° leaves it in space above
the zero center. Call that number i:
+i

Complex Numbers

Multiplying a number by i twice equals
negation (two rotations of 90°),

Thus ixi=i2=-1, and therefore i = V-1

You can’t take the square root of negative
numbers, right?

Well, here we can, sort of, but to do this...
... Iis called “imaginary”

Complex Numbers

* A complex number is then a pair of numbers:
— A value along the Real axis,
— A value along the Imaginary axis.
— Written with the Real part first, then Imaginary.
* Examples:
—2+43i, 5-7i, -3+2i, -4-6i, 6.7+5.9i, etc.
— Just 7 by itself (the same as 7+0i)

Complex Math

* Add/Subtract: treat components separately:

— 2460 + 5-2i = (2+5)+(6-2)i = 7+4i
— 2+6i — 5-2i = (2-5)+(6—-2)i = -3+8i
* Multiplication uses FOIL method:
— 2460 x 5-2i =
- (2 x5)+(2x-2i)+(6i x 5)+(6i x -2i) =
- (10) + (-4i) + (30i) + (-12i2) =
- (10 +12) + (-4 +30)i = 22+26i

1/19/2020

Complex Math

* Division uses two complex multiplications to
eliminate imaginary component in denominator,
* Multiply both numerator and denominator by
complex conjugate of denominator (the same
number with opposite sign on imaginary part).
* Example:
— 22+26i + 2+6i =
- Numerator: 22+26i x 2-6i = 200 - 80i
- Denominator: 2461 x 2-6i = 4+36 = 40
- 200-80i + 40 = 5-2i

Complex Math

* Used in math, engineering, physics, etc.

* Supported by early language FORTRAN,

* Supported by modern language Python,

* Supported (badly) by Excel 2007 and later.
* Mostly Double-Precision Floats,

* Subject to same round-off errors as other
floating-point numbers.

