Why do we Care?

- It is estimated that around 70% of what any computer does over its entire operational lifetime is either searching or sorting.
- **Searching**: Looking for an item in a group of items. Can be a simple list or something much more complicated.
- **Sorting**: Arranging items into some order (numerical or alphabetical), either for our convenience or to make searches faster.

Big-O Notation

- There are N items in the list to search or sort.
- Mathematically, we describe the “goodness” or **worst-case performance** of a technique as an expression involving N, called “big-O” notation.
 - $O(1) = \text{constant performance, regardless of } N$.
 - $O(N) = \text{performance directly proportional to } N$.
 - $O(\log_2(N)) = \text{performance proportional to the logarithm base 2 of } N$.
 - $O(N^2) = \text{performance proportional to the square of } N$.
 - Etc., etc., etc.

Big-O Example

- For example, suppose we can describe the performance of a technique precisely as:

 $$f(N) = 3N^2 - 4N + 2$$

- As N grows, the dominant term is the $3N^2$ (grows much faster than the $4N$ term).
- The coefficient 3 is largely irrelevant (could be 5 or 2 and doesn’t change the N^2 effect).
- This is considered an $O(N^2)$ technique.

Linear Search

- Items can be in any order,
- Have to examine first record, then second record, etc., until item is found or all items have been examined,
- Worst case search time (item not found) is $O(N)$ for N items,
- Search time grows linearly as a function of N.

Self-Organizing Lists

- What if we move every item searched closer to the front of the list, so it can be found faster next time?
- Several self-organizing list techniques:
 - Swap with front (fast to move, no clustering)
 - Move to front (slow to move on simple lists, fast on more complicated structures, excellent clustering)
 - Promote by one slot (fast to move, slow clustering)
 - Promote by half the list length (OK but not great move and clustering performance)
- Can improve average performance, but not worst case. Still $O(N)$ worst case!
Binary Search

- Items must be sorted on search field,
- Examine middle record, stop if found, but if not found discard half of list known to not contain item, repeat until found or list empty,
- Worst case search time (item not found) is \(O(\log_2(N))\) for \(N\) items,
- Search time grows \textit{logarithmically} as a function of \(N\),
- \(O(\log_2(N))\) grows more slowly than \(O(N)\), so binary search is much faster than linear search for large \(N\).

Sorting

- Very time expensive,
- Worst case sort time is \(O(N^2)\) for bad sorting algorithms (usually simple to program),
- Worst case sort time is \(O(N\times\log_2(N))\) for \(N\) items for good (more complex) sorting algorithms,
- Worth it to sort once if binary search can be used many times.

SUMMARY

- Linear Search: \(O(N)\), but items can be in any order.
- Binary Search: \(O(\log_2(N))\), but items must be sorted.
- Sorting: \(O(N^2)\) for bad (i.e., simple) sorts.
- Sorting: \(O(N\times\log_2(N))\) for good sorts.

Comparison of Times

- "Big-O" Running Times

What if we need to see a table in several different orders?

- Option #1: Re-sort table each time a new view is needed.
 - Only one table, but...
 - ...takes lots of unnecessary time.
- Option #2: Make several copies of table, each sorted on a different field.
 - Many copies means lots of disk space used, and...
 - Adding/Deleting/Changing record in one means same change must be made to all (data consistency).
- Option #3: Use Indexes. (Next Lecture!)