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Lecture #33 – April 30, 2004 

The CDC-3300 and 6000 Series 
Continuing on in “Bizarre Architectures Week” we look at two machines from the 

1960s, both strongly influenced by Seymour Cray before he left Control Data 
Corporation (CDC) to form his own company.  Both machines were very powerful 
computers, and were considered to be supercomputers in their day.  By today’s standards 
they are very underpowered.  Part of the lesson of examining these two machines is that 
neither observes the “standard” design rules implicit in essentially all modern machines.  
Modern processors all use a word that is eight bits or an even power of eight bits in 
length, all use two’s complement binary arithmetic with occasional BCD augmentation, 
and except for some machines that still use EBCDIC nearly all use ASCII or the Unicode 
superset of ASCII as their character set.  While these design rules are implicit today, 
early machines were designed with very different criteria.  Only as alternatives were 
explored and discarded over time did we converge on the current approaches. 

The CDC-3300 

For example, the CDC-3300 was a 24-bit architecture, using one’s complement 
binary arithmetic, with two accumulators labeled A and Q, and two or three banks of 32K 
of 24-bit magnetic core memory.  Accumulator A was the main accumulator, and Q was 
a “quotient register” partially dedicated to handling multiplications and divisions.  In 
addition, there were four 15-bit index registers used for memory offsets into arrays 
(actually, there were only three physical index registers R1, R2, and R3; “register” R0 
didn’t actually exist and therefore always had the value zero). 

Instructions observed a relatively fixed format: 6 bits for Op-Code, 3 bits for the 
modifier field (containing 1 bit for indirect memory references and 2 bits to specify the 
index register), and 15 bits for the address.  Any instruction could reference any location 
in memory, and the index registers were large enough to treat the entire 32K address 
space in any memory bank as one large array. 

 

An effective address is formed by first extracting the 15-bit address field from the 
instruction, and then adding to that address field the contents of the specified index 
register.  This is why R0 is always zero; an absolute address uses R0 by default.  The 
address so formed is the final effective address of the desired operand only if the Indirect 
bit is 0, but if the Indirect bit equals 1 the contents of memory at the specified address are 
used as the final address of the desired operand. 
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Instructions sequences to add or subtract two numbers used the A accumulator 
most of the time, but they could also use the Q register independently, or in a 48-bit mode 
in combination with accumulator A.  Thus, adding two numbers for the high-level 
expression C := A + B would take one of the following three forms: 
 

24-Bit using A 24-Bit using Q 48-Bit using AQ 
LDA A  LDQ A  LDAQ A 
ADA B  ADQ B  ADAQ B 
STA C  STA C  STAQ C 

Arithmetic used one’s complement binary, so negating a number was as simple as 
inverting all of the bit values.  While this representation has exactly the same number of 
negative values as positive values, it also generates the unfortunate side effect that both 
000000000000000000000000 and 111111111111111111111111 are representations for 
zero.  The arithmetic unit had to detect the “negative zero” case and convert it to 
“positive zero” appropriately. 

Characters were six bits in length, not eight, and so each 24-bit word could 
contain exactly four characters.  Letters were limited to upper-case only, as there were 
not enough bit patterns in 6 bits (26 = 64 values) to represent both upper and lower case 
letters and still leave room for anything else.  Once you force 26 upper case letters, 26 
lower case letters, and 10 digits into the character set, you have just enough space left for 
the blank and the period! 

The 3300 could execute around one million instructions per second and was 
considered a supercomputer in 1965.  One was installed at Oregon State University, and 
until the late 1970s ran a homegrown operating system called OS3 (Oregon State Open 
Shop Operating System).  At its peak it could handle up to about 80 simultaneous users, 
all editing, compiling, and running BASIC or FORTRAN programs via 10-character-per-
second Teletype™ printing terminals. 

The CDC-6000 Series 

The Control Data Corporation 6000 series consisted of the 6400, 6500, 6600, and 
6700 models, which evolved into the Cyber 7000 series.  Only a few dozen such 
machines were ever constructed.  They were designed as heavy-duty, one-program-at-a-
time “number-crunchers” for scientific processing but were forced into service in many 
installations as general-purpose time-sharing machines, an application for which they 
were particularly ill suited. 

The basic architecture of the machines consisted of a central processing core 
surrounded by ten (or twenty) peripheral processing units (PPUs).  The CPU did all the 
computational “heavy lifting” but was not capable of performing any input/output on its 
own.  The PPUs were small independent computers similar in architecture to the PDP-8 
(12-bit arithmetic, 4K of memory) that could access the main memory at the same time as 
the CPU.  The PPUs would leave input values in main memory for the CPU to find, and 
would extract for output any values left in main memory by the CPU. 
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The CPU was a one’s complement, 60-bit architecture, using multiple registers 
(more on that later) and 256K 60-bit words of primary memory.  Instructions were either 
15 bits or 30 bits in length, depending on whether or not they referenced memory.  The 
15-bit instructions were very similar to those on the ARM in that they specified two 
operand registers and a result register.  The 30-bit instructions contained space to specify 
two registers and a single 18-bit memory address.  A 60-bit memory word could therefore 
contain four 15-bit instructions, two 30-bit instructions, two 15-bit instructions and one 
30-bit instruction, or one 30-bit instruction and two 15-bit instructions.  You could not 
specify a 30-bit instruction to be between two 15-bit instructions, however, and this 
occasionally required the insertion of a 15-bit NOP (No Operation) instruction into the 
code to align the 30-bit instruction with the proper half of the word. 

Similarly, a 60-bit word could hold one long integer, one floating point number, 
or ten 6-bit characters (not exactly the same character set as on the 3300, but subject to 
the same upper-case-only constraints).  The 18-bit addresses could reference any 60-bit 
word in the 256K address space. 

 

There were eight 60-bit X registers for computations, along with eight 18-bit A 
registers for addresses and eight 18-bit B registers for array offsets.  The A and X 
registers operated in concert for loading values from or storing values into memory; 
setting A0 through A5 to any address value loaded the corresponding X register from 
memory at the specified address, and setting A6 or A7 to any address value stored the 
corresponding X register into memory.  This may seem a bit odd, but it allowed 
arithmetic on addresses to be separate from arithmetic on data.  Incrementing A3 by 1 
several times, for example, stepped through an array in memory by successively creating 
new addresses into A3, each with the side effect of loading the corresponding memory 
location into X3.  Memory reference instructions were always 30 bits in length, each 
containing a 6-bit Op-Code, two 3-bit register specifiers, and an 18-bit address. 

The B registers were used as index registers, where the value in a B register was 
added to the address in an A register to obtain the final effective address.  For absolute 
addressing purposes B0 always contained zero (similar to the situation on the 3300).  
Arithmetic operations were always performed between X registers, similar to the 
situation on the ARM.  These instructions were always 15 bits in length, each containing 
a 6-bit Op-Code and three 3-bit register specifiers (two source registers and one 
destination, similar to the three-address instructions on the ARM). 
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Our high-level code for adding two numbers together, C := A + B, would look 
as follows on the 6000 series (if I remember the Op-Codes correctly): 
 
  SA1 A     Set A1 to A’s address, load  X1 with Memory[A1] 
  SA2 B     Set A2 to B’s address, load  X2 with Memory[A2] 
  RX6 X1+X2 Compute X6 := X1 + X2 
  SA6 C     Set A6 to C’s address, store X6 into Memory[A6] 

This instruction sequence takes up only two words of memory.  The first word 
contains the two 30-bit load instructions.  The second word contains the 15-bit 
computation instruction and the 30-bit store instruction, but in order to align the 30-bit 
instruction properly the assembler must insert a 15-bit NOP instruction between the RX6 
and the SA6 instructions.  Notice that the instruction sequence has two loads and one 
store; this is why three times as many of the A registers caused loads to happen rather 
than stores. 

ASCII-based terminal equipment and primitive batch-mode word processors were 
becoming popular towards the end of the lifetime of the 6000 series; support for lower 
case characters was implemented by prefixing each lower case letter with an up-carat 
character.  Native upper case only files were unaffected by this approach, but mixed case 
text files were roughly twice as large.  For example, the phrase “This is a test.” 
would be stored as “T^H^I^S ^I^S ^A ^T^E^S^T.” in the file.  The PPUs would 
have to translate between this form and ASCII on both input and output. 

It was expected that once a program started running that it would run to 
completion without interruption, so there was no initial support for timesharing or 
switching between different programs.  Many early 6000 series machines were batch 
only; reading in decks of punched cards one at a time, compiling and running the 
associated program, printing the results, and flushing the program from memory.  The 
timesharing approach that was taken in the Kronos and NOS operating systems was to 
have the PPUs switch from one program to another by saving the entire program memory 
and the contents of all registers to disk, called a rollout of the program.  Once one 
program was rolled out another was rolled in, its register values were restored, and it 
started running.  As each program’s time slice expired, determined by the PPUs, it was 
rolled out to disk and the next program rolled in for its time slice.  This approach is 
dreadfully inefficient, but it worked well enough and the machines were fast enough that 
timesharing operating systems would support a few dozen simultaneous users. 

Conclusions 

For their day, these machines were among the most powerful computers on the 
planet.  At the time numerical problems were paramount, so these machines were 
designed to support high-speed computations at the expense of text or string processing.  
You can get a feeling for this from the decision to use a 6-bit character set without any 
native support for lower case characters.   
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Both 24-bit words on the 3300 (48-bits in double precision) and 60-bit words on 
the 6000 series seem very strange sizes to us today, but they were certainly adequate for 
the problems they were solving.  What seems most strange to me today is the choice of 
one’s complement arithmetic instead of two’s complement. 

Despite their peculiarities, the 3300 and the 6000 series were relatively clean 
architectures (contrast them with the Intel 80x86 line), and the 6000 series had some 
early elements of what we consider today to be RISC designs.  While none of these 
machines are in operation today, as far as I know, they still have some lessons for us in 
alternative approaches to successful machine design. 

 


	Lecture #33 – April 30, 2004
	The CDC-3300 and 6000 Series
	
	The CDC-3300
	The CDC-6000 Series
	Conclusions



